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1. Foreword
Menhir is a parser generator. It turns high-level grammar specifications, decorated with semantic actions
expressed in the OCaml programming language [18], into parsers, again expressed in OCaml. It is based
on Knuth’s LR(1) parser construction technique [15]. It is strongly inspired by its precursors: yacc [11],
ML-Yacc [22], and ocamlyacc [18], but offers a large number of minor and major improvements that make
it a more modern tool.

This brief reference manual explains how to use Menhir. It does not attempt to explain context-free grammars,
parsing, or the LR technique. Readers who have never used a parser generator are encouraged to read about these
ideas first [1, 2, 8]. They are also invited to have a look at the demos directory in Menhir’s distribution.

Potential users of Menhir should be warned that Menhir’s feature set is not completely stable. There is a
tension between preserving a measure of compatibility with ocamlyacc, on the one hand, and introducing new
ideas, on the other hand. Some aspects of the tool, such as the error handling mechanism, are still potentially
subject to incompatible changes: for instance, in the future, the current error handling mechanism (which is
based on the error token, see §10) could be removed and replaced with an entirely different mechanism.

There is room for improvement in the tool and in this reference manual. Bug reports and suggestions are
welcome!

2. Usage
Menhir is invoked as follows:

menhir option . . . option filename . . . filename

Each of the file names must end with .mly (unless --coq is used, in which case it must end with .vy) and
denotes a partial grammar specification. These partial grammar specifications are joined (§5.1) to form a single,
self-contained grammar specification, which is then processed. The following optional command line switches
allow controlling many aspects of the process.

--base basename. This switch controls the base name of the .ml and .mli files that are produced.
That is, the tool will produce files named basename.ml and basename.mli. Note that basename can contain
occurrences of the / character, so it really specifies a path and a base name. When only one filename is provided
on the command line, the default basename is obtained by depriving filename of its final .mly suffix. When
multiple file names are provided on the command line, no default base name exists, so that the --base switch
must be used.

--cmly. This switch causes Menhir to produce a .cmly file in addition to its normal operation. This file
contains a (binary-form) representation of the grammar and automaton (see §13.1).

--comment. This switch causes a few comments to be inserted into the OCaml code that is written to the
.ml file.

--compare-errors filename1 --compare-errors filename2. Two such switches must always be used in
conjunction so as to specify the names of two .messages files, filename1 and filename2. Each file is read and
internally translated to a mapping of states to messages. Menhir then checks that the left-hand mapping is a
subset of the right-hand mapping. This feature is typically used in conjunction with --list-errors to check
that filename2 is complete (that is, covers all states where an error can occur). For more information, see §11.

--compile-errors filename. This switch causes Menhir to read the file filename, which must obey the
.messages file format, and to compile it to an OCaml function that maps a state number to a message. The
OCaml code is sent to the standard output channel. At the same time, Menhir checks that the collection of input
sentences in the file filename is correct and irredundant. For more information, see §11.

--coq. This switch causes Menhir to produce Coq code. See §12.

4 20181113

https://gitlab.inria.fr/fpottier/menhir/blob/master/demos


--coq-lib-path path. This switch allows specifying under what name (or path) the Coq support library
MenhirLib is known to Coq. When Menhir runs in --coq mode, the generated parser contains references to
several modules in this library. This path is used to qualify these references. Its default value is MenhirLib.

--coq-lib-no-path. This switch indicates that references to the Coq library MenhirLib should not be
qualified. This was the default behavior of Menhir prior to 2018/05/30. This switch is provided for compatibility,
but normally should not be used.

--coq-no-actions. (Used in conjunction with --coq.) This switch causes the semantic actions present
in the .vy file to be ignored and replaced with tt, the unique inhabitant of Coq’s unit type. This feature can
be used to test the Coq back-end with a standard grammar, that is, a grammar that contains OCaml semantic
actions. Just rename the file from .mly to .vy and set this switch.

--coq-no-complete. (Used in conjunction with --coq.) This switch disables the generation of the proof
of completeness of the parser (§12). This can be necessary because the proof of completeness is possible only
if the grammar has no conflict (not even a benign one, in the sense of §6.1). This can be desirable also because,
for a complex grammar, completeness may require a heavy certificate and its validation by Coq may take time.

--depend. See §14.

--dump. This switch causes a description of the automaton to be written to the file basename.automaton.

--echo-errors filename. This switch causes Menhir to read the .messages file filename and to produce
on the standard output channel just the input sentences. (That is, all messages, blank lines, and comments are
filtered out.) For more information, see §11.

--explain. This switch causes conflict explanations to be written to the file basename.conflicts. See
also §6.

--external-tokens T. This switch causes the definition of the token type to be omitted in basename.ml
and basename.mli. Instead, the generated parser relies on the type T.token, where T is an OCaml module
name. It is up to the user to define module T and to make sure that it exports a suitable token type. Module T can
be hand-written. It can also be automatically generated out of a grammar specification using the --only-tokens
switch.

--fixed-exception. This switch causes the exception Error to be internally defined as a synonym
for Parsing.Parse_error. This means that an exception handler that catches Parsing.Parse_error will
also catch the generated parser’s Error. This helps increase Menhir’s compatibility with ocamlyacc. There is
otherwise no reason to use this switch.

--graph. This switch causes a description of the grammar’s dependency graph to be written to the file
basename.dot. The graph’s vertices are the grammar’s nonterminal symbols. There is a directed edge from
vertex A to vertex B if the definition of A refers to B. The file is in a format that is suitable for processing by
the graphviz toolkit.

--infer, --infer-write-query, --infer-read-reply. See §14.

--inspection. This switch requires --table. It causes Menhir to generate not only the monolithic and
incremental APIs (§9.1, §9.2), but also the inspection API (§9.3). Activating this switch causes a few more
tables to be produced, resulting in somewhat larger code size.

--interpret. This switch causes Menhir to act as an interpreter, rather than as a compiler. No OCaml
code is generated. Instead, Menhir reads sentences off the standard input channel, parses them, and displays
outcomes. This switch can be usefully combined with --trace. For more information, see §8.

--interpret-error. This switch is analogous to --interpret, except Menhir expects every sentence
to cause an error on its last token, and displays information about the state in which the error is detected, in the
.messages file format. For more information, see §11.
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--interpret-show-cst. This switch, used in conjunction with --interpret, causes Menhir to display
a concrete syntax tree when a sentence is successfully parsed. For more information, see §8.

--list-errors. This switch causes Menhir to produce (on the standard output channel) a complete list of
input sentences that cause an error, in the .messages file format. For more information, see §11.

--log-automaton level. When level is nonzero, this switch causes some information about the automaton
to be logged to the standard error channel.

--log-code level. When level is nonzero, this switch causes some information about the generated OCaml
code to be logged to the standard error channel.

--log-grammar level. When level is nonzero, this switch causes some information about the grammar to
be logged to the standard error channel. When level is 2, the nullable, FIRST, and FOLLOW tables are displayed.

--no-dollars. This switch disallows the use of positional keywords of the form $i.

--no-inline. This switch causes all %inline keywords in the grammar specification to be ignored. This
is especially useful in order to understand whether these keywords help solve any conflicts.

--no-stdlib. This switch instructs Menhir to not use its standard library (§5.4).

--ocamlc command. See §14.

--ocamldep command. See §14.

--only-preprocess. This switch causes the grammar specifications to be transformed up to the point
where the automaton’s construction can begin. The grammar specifications whose names are provided on
the command line are joined (§5.1); all parameterized nonterminal symbols are expanded away (§5.2); type
inference is performed, if --infer is enabled; all nonterminal symbols marked %inline are expanded away
(§5.3). This yields a single, monolithic grammar specification, which is printed on the standard output channel.

--only-tokens. This switch causes the %token declarations in the grammar specification to be translated
into a definition of the token type, which is written to the files basename.ml and basename.mli. No code is
generated. This is useful when a single set of tokens is to be shared between several parsers. The directory
demos/calc-two contains a demo that illustrates the use of this switch.

--raw-depend. See §14.

--stdlib directory. This switch controls the directory where the standard library (§5.4) is found. It takes
precedence over both the installation-time directory and the directory that may be specified via the environment
variable $MENHIR_STDLIB.

--strict. This switch causes several warnings about the grammar and about the automaton to be
considered errors. This includes warnings about useless precedence declarations, non-terminal symbols that
produce the empty language, unreachable non-terminal symbols, productions that are never reduced, conflicts
that are not resolved by precedence declarations, and end-of-stream conflicts.

--suggest-*. See §14.

--table. This switch causes Menhir to use its table-based back-end, as opposed to its (default) code-based
back-end. When --table is used, Menhir produces significantly more compact and somewhat slower parsers.
See §16 for a speed comparison.

The table-based back-end produces rather compact tables, which are analogous to those produced by yacc,
bison, or ocamlyacc. These tables are not quite stand-alone: they are exploited by an interpreter, which is
shipped as part of the support library MenhirLib. For this reason, when --table is used, MenhirLib must
be made visible to the OCaml compilers, and must be linked into your executable program. The –suggest-*
switches, described above, help do this.

The code-based back-end compiles the LR automaton directly into a nest of mutually recursive OCaml
functions. In that case, MenhirLib is not required.
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The incremental API (§9.2) and the inspection API (§9.3) are made available only by the table-based back-
end.

--timings. This switch causes internal timing information to be sent to the standard error channel.
--trace. This switch causes tracing code to be inserted into the generated parser, so that, when the parser

is run, its actions are logged to the standard error channel. This is analogous to ocamlrun’s p=1 parameter,
except this switch must be enabled at compile time: one cannot selectively enable or disable tracing at runtime.

--unused-precedence-levels. This switch suppresses all warnings about useless %left, %right,
%nonassoc and %prec declarations.

--unused-token symbol. This switch suppresses the warning that is normally emitted when Menhir finds
that the terminal symbol symbol is unused.

--unused-tokens. This switch suppresses all of the warnings that are normally emitted when Menhir
finds that some terminal symbols are unused.

--update-errors filename. This switch causes Menhir to read the .messages file filename and to produce
on the standard output channel a new .messages file that is identical, except the auto-generated comments have
been re-generated. For more information, see §11.

--version. This switch causes Menhir to print its own version number and exit.

3. Lexical conventions
A semicolon character (;) may appear after a declaration (§4.1).

An old-style rule (§4.2) may be terminated with a semicolon. Also, within an old-style rule, each producer
(§4.2.3) may be terminated with a semicolon.

A new-style rule (§4.3) must not be terminated with a semicolon. Within such a rule, the elements of a
sequence must be separated with semicolons.

Semicolons are not allowed to appear anywhere except in the places mentioned above. This is in contrast
with ocamlyacc, which views semicolons as insignificant, just like whitespace.

Identifiers (id) coincide with OCaml identifiers, except they are not allowed to contain the quote (’) character.
Following OCaml, identifiers that begin with a lowercase letter (lid) or with an uppercase letter (uid) are
distinguished.

A quoted identifier qid is a string enclosed in double quotes. Such a string cannot contain a double quote or
a backslash. Quoted identifiers are used as token aliases (§4.1.3).

Comments are C-style (surrounded with /* and */, cannot be nested), C++-style (announced by // and
extending until the end of the line), or OCaml-style (surrounded with (* and *), can be nested). Of course,
inside OCaml code, only OCaml-style comments are allowed.

OCaml type expressions are surrounded with < and >. Within such expressions, all references to type
constructors (other than the built-in list, option, etc.) must be fully qualified.

4. Syntax of grammar specifications
The syntax of grammar specifications appears in Figure 1. The places where attributes can be attached are not
shown; they are documented separately (§13.2). A grammar specification begins with a sequence of declarations
(§4.1), ended by a mandatory %% keyword. Following this keyword, a sequence of rules is expected. Each rule
defines a nonterminal symbol lid, whose name must begin with a lowercase letter. A rule is expressed either in
the “old syntax” (§4.2) or in the “new syntax” (§4.3), which is slightly more elegant and powerful.

4.1 Declarations
4.1.1 Headers
A header is a piece of OCaml code, surrounded with %{ and %}. It is copied verbatim at the beginning of the
.ml file. It typically contains OCaml open directives and function definitions for use by the semantic actions.
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specification ::= declaration . . . declaration %% rule . . . rule [%% OCaml code ]
declaration ::= %{ OCaml code %}

%parameter < uid : OCaml module type >
%token [< OCaml type > ] uid [ qid ] . . . uid [ qid ]
%nonassoc uid . . . uid
%left uid . . . uid
%right uid . . . uid
%type < OCaml type > lid . . . lid
%start [< OCaml type > ] lid . . . lid
%attribute actual . . . actual attribute . . . attribute
% attribute
%on_error_reduce lid . . . lid

attribute ::= [@ name payload ]

old syntax — rule ::= [%public ] [%inline ] lid [ ( id, . . . , id ) ] : [ | ] group | . . . | group
group ::= production | . . . | production { OCaml code } [%prec id ]

production ::= producer . . . producer [%prec id ]
producer ::= [ lid = ] actual

actual ::= id [ ( actual, . . . , actual ) ]
actual ( ? |+ | * )
group | . . . | group

new syntax — rule ::= [%public ] let lid [ ( id, . . . , id ) ] ( := |== ) expression
expression ::= [ | ] expression | . . . | expression

[ pattern = ] expression ; expression
id [ ( expression, . . . , expression ) ]
expression ( ? |+ | * )
{ OCaml code } [%prec id ]
< OCaml id > [%prec id ]

pattern ::= lid | _ | ~ | ( pattern, . . . , pattern )

Figure 1. Syntax of grammar specifications

If a single grammar specification file contains multiple headers, their order is preserved. However, when two
headers originate in distinct grammar specification files, the order in which they are copied to the .ml file is
unspecified.

4.1.2 Parameters
A declaration of the form:

%parameter < uid : OCaml module type >

causes the entire parser to become parameterized over the OCaml module uid, that is, to become an OCaml
functor. The directory demos/calc-param contains a demo that illustrates the use of this switch.

If a single specification file contains multiple %parameter declarations, their order is preserved, so that the
module name uid introduced by one declaration is effectively in scope in the declarations that follow. When
two %parameter declarations originate in distinct grammar specification files, the order in which they are
processed is unspecified. Last, %parameter declarations take effect before %{ . . . %}, %token, %type, or
%start declarations are considered, so that the module name uid introduced by a %parameter declaration is
effectively in scope in all %{ . . . %}, %token, %type, or %start declarations, regardless of whether they
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precede or follow the %parameter declaration. This means, in particular, that the side effects of an OCaml
header are observed only when the functor is applied, not when it is defined.

4.1.3 Tokens
A declaration of the form:

%token [< OCaml type > ] uid1 [ qid1 ] . . . uidn [ qidn ]

defines the identifiers uid1, . . . , uidn as tokens, that is, as terminal symbols in the grammar specification and as
data constructors in the token type.

If an OCaml type t is present, then these tokens are considered to carry a semantic value of type t, otherwise
they are considered to carry no semantic value.

If a quoted identifier qidi is present, then it is considered an alias for the terminal symbol uidi. (This feature,
known as “token aliases”, is borrowed from Bison.) Throughout the grammar, the quoted identifier qidi is then
synonymous with the identifier uidi. For example, if one declares:

%token PLUS "+"

then the quoted identifier "+" stands for the terminal symbol PLUS throughout the grammar. An example of
the use of token aliases appears in the directory demos/calc-alias. Token aliases can be used to improve
the readability of a grammar. One must keep in mind, however, that they are just syntactic sugar: they are not
interpreted in any way by Menhir or conveyed to tools like ocamllex. They could be considered confusing by
a reader who mistakenly believes that they are interpreted as string literals.

4.1.4 Priority and associativity
A declaration of one of the following forms:

%nonassoc uid1 . . . uidn
%left uid1 . . . uidn
%right uid1 . . . uidn

assigns both a priority level and an associativity status to the symbols uid1, . . . , uidn. The priority level
assigned to uid1, . . . , uidn is not defined explicitly: instead, it is defined to be higher than the priority level
assigned by the previous %nonassoc, %left, or %right declaration, and lower than that assigned by the next
%nonassoc, %left, or %right declaration. The symbols uid1, . . . , uidn can be tokens (defined elsewhere by a
%token declaration) or dummies (not defined anywhere). Both can be referred to as part of %prec annotations.
Associativity status and priority levels allow shift/reduce conflicts to be silently resolved (§6).

4.1.5 Types
A declaration of the form:

%type < OCaml type > lid1 . . . lidn

assigns an OCaml type to each of the nonterminal symbols lid1, . . . , lidn. For start symbols, providing an OCaml
type is mandatory, but is usually done as part of the %start declaration. For other symbols, it is optional.
Providing type information can improve the quality of OCaml’s type error messages.

A %type declaration may concern not only a nonterminal symbol, such as, say, expression, but also a
fully applied parameterized nonterminal symbol, such as list(expression) or separated_list(COMMA,
option(expression)).

The types provided as part of %type declarations are copied verbatim to the .ml and .mli files. In contrast,
headers (§4.1.1) are copied to the .ml file only. For this reason, the types provided as part of %type declarations
must make sense both in the presence and in the absence of these headers. They should typically be fully
qualified types.
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4.1.6 Start symbols
A declaration of the form:

%start [< OCaml type > ] lid1 . . . lidn

declares the nonterminal symbols lid1, . . . , lidn to be start symbols. Each such symbol must be assigned an
OCaml type either as part of the %start declaration or via separate %type declarations. Each of lid1, . . . , lidn
becomes the name of a function whose signature is published in the .mli file and that can be used to invoke the
parser.

4.1.7 Attribute declarations
Attribute declarations of the form %attribute actual . . . actual attribute . . . attribute and % attribute are
explained in §13.2.

4.1.8 Extra reductions on error
A declaration of the form:

%on_error_reduce lid1 . . . lidn

marks the nonterminal symbols lid1, . . . , lidn as potentially eligible for reduction when an invalid token is found.
This may cause one or more extra reduction steps to be performed before the error is detected.

More precisely, this declaration affects the automaton as follows. Let us say that a production lid → . . .
is “reducible on error” if its left-hand symbol lid appears in a %on_error_reduce declaration. After the
automaton has been constructed and after any conflicts have been resolved, in every state s, the following
algorithm is applied:

1. Construct the set of all productions that are ready to be reduced in state s and are reducible on error;
2. Test if one of them, say p, has higher “on-error-reduce-priority” than every other production in this set;
3. If so, in state s, replace every error action with a reduction of the production p. (In other words, for every

terminal symbol t, if the action table says: “in state s, when the next input symbol is t, fail”, then this entry
is replaced with: “in state s, when the next input symbol is t, reduce production p”.)

If step 3 above is executed in state s, then an error can never be detected in state s, since all error actions in
state s are replaced with reduce actions. Error detection is deferred: at least one reduction takes place before the
error is detected. It is a “spurious” reduction: in a canonical LR(1) automaton, it would not take place.

An %on_error_reduce declaration does not affect the language that is accepted by the automaton. It does
not affect the location where an error is detected. It is used to control in which state an error is detected. If used
wisely, it can make errors easier to report, because they are detected in a state for which it is easier to write an
accurate diagnostic message (§11.3).

Like a %type declaration, an %on_error_reduce declaration may concern not only a nonterminal
symbol, such as, say, expression, but also a fully applied parameterized nonterminal symbol, such as
list(expression) or separated_list(COMMA, option(expression)).

The “on-error-reduce-priority” of a production is that of its left-hand symbol. The “on-error-reduce-priority”
of a nonterminal symbol is determined implicitly by the order of %on_error_reduce declarations. In the
declaration %on_error_reduce lid1 . . . lidn, the symbols lid1, . . . , lidn have the same “on-error-reduce-
priority”. They have higher “on-error-reduce-priority” than the symbols listed in previous %on_error_reduce
declarations, and lower “on-error-reduce-priority” than those listed in later %on_error_reduce declarations.

4.2 Rules—old syntax
In its simplest form, a rule begins with the nonterminal symbol lid, followed by a colon character (:), and
continues with a sequence of production groups (§4.2.1). Each production group is preceded with a vertical bar
character (|); the very first bar is optional. The meaning of the bar is choice: the nonterminal symbol id develops
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to either of the production groups. We defer explanations of the keyword %public (§5.1), of the keyword
%inline (§5.3), and of the optional formal parameters ( id, . . . , id ) (§5.2).

4.2.1 Production groups
In its simplest form, a production group consists of a single production (§4.2.2), followed by an OCaml semantic
action (§4.2.1) and an optional %prec annotation (§4.2.1). A production specifies a sequence of terminal and
nonterminal symbols that should be recognized, and optionally binds identifiers to their semantic values.

Semantic actions A semantic action is a piece of OCaml code that is executed in order to assign a semantic
value to the nonterminal symbol with which this production group is associated. A semantic action can refer to
the (already computed) semantic values of the terminal or nonterminal symbols that appear in the production
via the semantic value identifiers bound by the production.

For compatibility with ocamlyacc, semantic actions can also refer to unnamed semantic values via positional
keywords of the form $1, $2, etc. This style is discouraged. (It is in fact forbidden if --no-dollars is turned
on.) Furthermore, as a positional keyword of the form $i is internally rewritten as _i, the user should not use
identifiers of the form _i.

%prec annotations An annotation of the form %prec id indicates that the precedence level of the production
group is the level assigned to the symbol id via a previous %nonassoc, %left, or %right declaration (§4.1.4).
In the absence of a %prec annotation, the precedence level assigned to each production is the level assigned to
the rightmost terminal symbol that appears in it. It is undefined if the rightmost terminal symbol has an undefined
precedence level or if the production mentions no terminal symbols at all. The precedence level assigned to a
production is used when resolving shift/reduce conflicts (§6).

Multiple productions in a group If multiple productions are present in a single group, then the semantic action
and precedence annotation are shared between them. This short-hand effectively allows several productions to
share a semantic action and precedence annotation without requiring textual duplication. It is legal only when
every production binds exactly the same set of semantic value identifiers and when no positional semantic value
keywords ($1, etc.) are used.

4.2.2 Productions
A production is a sequence of producers (§4.2.3), optionally followed by a %prec annotation (§4.2.1). If a
precedence annotation is present, it applies to this production alone, not to other productions in the production
group. It is illegal for a production and its production group to both carry %prec annotations.

4.2.3 Producers
A producer is an actual (§4.2.4), optionally preceded with a binding of a semantic value identifier, of the form lid
=. The actual specifies which construction should be recognized and how a semantic value should be computed
for that construction. The identifier lid, if present, becomes bound to that semantic value in the semantic action
that follows. Otherwise, the semantic value can be referred to via a positional keyword ($1, etc.).

4.2.4 Actuals
In its simplest form, an actual is just a terminal or nonterminal symbol id. If it is a parameterized non-terminal
symbol (see §5.2), then it should be applied: id( actual, . . . , actual ).

An actual may be followed with a modifier (?, +, or *). This is explained further on (see §5.2 and Figure 2).
An actual may also be an “anonymous rule”. In that case, one writes just the rule’s right-hand side, which

takes the form group | . . . | group. (This form is allowed only as an argument in an application.) This form is
expanded on the fly to a definition of a fresh non-terminal symbol, which is declared %inline. For instance,
providing an anonymous rule as an argument to list:

list ( e = expression; SEMICOLON { e } )
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is equivalent to writing this:

list ( expression_SEMICOLON )

where the non-terminal symbol expression_SEMICOLON is chosen fresh and is defined as follows:

%inline expression_SEMICOLON:
| e = expression; SEMICOLON { e }

4.3 Rules—new syntax
Please be warned that the new syntax is considered experimental and is subject to change in the future.

In its simplest form, a rule takes the form let lid := expression. Its left-hand side lid is a nonterminal symbol;
its right-hand side is an expression. Such a rule defines an ordinary nonterminal symbol, while the alternate form
let lid == expression defines an %inline nonterminal symbol (§5.3), that is, a macro. A rule can be preceded
with the keyword %public (§5.1) and can be parameterized with a tuple of formal parameters ( id, . . . , id )
(§5.2). The various forms of expressions, listed in Figure 1, are:

• A choice between several expressions, [ | ] expression1 | . . . | expressionn. The leading bar is optional.
• A sequence of two expressions, pattern = expression1 ; expression2. The semantic value produced by

expression1 is decomposed according to the pattern pattern. The OCaml variables introduced by pattern
may appear in a semantic action that ends the sequence expression2.
• A sequence ~ = id1 ; expression2, which is sugar for id1 = id1 ; expression2. This is a pun.
• A sequence expression1 ; expression2, which is sugar for _ = expression1 ; expression2.
• A symbol id, possibly applied to a tuple of expressions ( expression1, . . . , expressionn ). It is worth noting

that such an expression can form the end of a sequence: id at the end of a sequence stands for x = id ; { x }
for some fresh variable x. Thus, a sequence need not end with a semantic action.
• An expression followed with ?, +, or *. This is sugar for the previous form: see §5.2 and Figure 2.
• A semantic action { OCaml code } , possibly followed with a precedence annotation %prec id. This OCaml

code can refer to the variables that have been bound earlier in the sequence that this semantic action ends.
These include all variables named by the user as well as all variables introduced by a ~ pattern as part of a
pun. The notation $i, where i is an integer, is forbidden.
• A point-free semantic action < OCaml id >, possibly followed with a precedence annotation %prec id.

The OCaml identifier id must denote a function or a data constructor. It is applied to a tuple of the variables
that have been bound earlier in the sequence that this semantic action ends. Thus, < id > is sugar for
{ id (x1, . . . , xn) }, where x1, . . . , xn are the variables bound earlier. These include all variables named
by the user as well as all variables introduced by a ~ pattern.
• An identity semantic action <>. This is sugar for < identity >, where identity is OCaml’s identity function.

Therefore, it is sugar for { (x1, . . . , xn) }, where x1, . . . , xn are the variables bound earlier.

The syntax of expressions, as presented in Figure 1, seems more permissive than it really is. In reality, a
choice cannot be nested inside a sequence; a sequence cannot be nested in the left-hand side of a sequence;
a semantic action cannot appear in the left-hand side of a sequence. (Thus, there is a stratification in three
levels: choice expressions, sequence expressions, and atomic expressions, which corresponds roughly to the
stratification of rules, productions, and producers in the old syntax.) Furthermore, an expression between
parentheses ( expression ) is not a valid expression. To surround an expression with parentheses, one must write
either midrule ( expression ) or endrule ( expression ); see §5.4 and Figure 3.

When a complex expression (e.g., a choice or a sequence) is placed in parentheses, as in id ( expression ),
this is equivalent to using id ( s ), where the fresh symbol s is declared as a synonym for this expression, via the
declaration let s == expression. This idiom is also known as an anonymous rule (§4.2.4).
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Examples As an example of a rule in the new syntax, the parameterized nonterminal symbol option, which is
part of Menhir’s standard library (§5.4), can be defined as follows:

let option(x) :=
| { None }
| x = x ; { Some x }

Using a pun, it can also be written as follows:

let option(x) :=
| { None }
| ~ = x ; { Some x }

Using a pun and a point-free semantic action, it can also be expressed as follows:

let option(x) :=
| { None }
| ~ = x ; < Some >

As another example, the parameterized symbol delimited, also part of Menhir’s standard library (§5.4), can be
defined in the new syntax as follows:

let delimited(opening, x, closing) ==
opening ; ~ = x ; closing ; <>

The use of == indicates that this is a macro, i.e., an %inline nonterminal symbol (see §5.3). The identity
semantic action <> is here synonymous with { x }.

Other illustrations of the new syntax can be found in the directories demos/calc-new-syntax-dune and
demos/calc-ast-dune.

5. Advanced features
5.1 Splitting specifications over multiple files
Modules Grammar specifications can be split over multiple files. When Menhir is invoked with multiple
argument file names, it considers each of these files as a partial grammar specification, and joins these partial
specifications in order to obtain a single, complete specification.

This feature is intended to promote a form a modularity. It is hoped that, by splitting large grammar
specifications into several “modules”, they can be made more manageable. It is also hoped that this mechanism,
in conjunction with parameterization (§5.2), will promote sharing and reuse. It should be noted, however, that
this is only a weak form of modularity. Indeed, partial specifications cannot be independently processed (say,
checked for conflicts). It is necessary to first join them, so as to form a complete grammar specification, before
any kind of grammar analysis can be done.

This mechanism is, in fact, how Menhir’s standard library (§5.4) is made available: even though its name
does not appear on the command line, it is automatically joined with the user’s explicitly-provided grammar
specifications, making the standard library’s definitions globally visible.

A partial grammar specification, or module, contains declarations and rules, just like a complete one: there is
no visible difference. Of course, it can consist of only declarations, or only rules, if the user so chooses. (Don’t
forget the mandatory %% keyword that separates declarations and rules. It must be present, even if one of the
two sections is empty.)

Private and public nonterminal symbols It should be noted that joining is not a purely textual process. If
two modules happen to define a nonterminal symbol by the same name, then it is considered, by default, that
this is an accidental name clash. In that case, each of the two nonterminal symbols is silently renamed so as to
avoid the clash. In other words, by default, a nonterminal symbol defined in module A is considered private,
and cannot be defined again, or referred to, in module B.
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Naturally, it is sometimes desirable to define a nonterminal symbol N in module A and to refer to it in
module B. This is permitted if N is public, that is, if either its definition carries the keyword %public or N is
declared to be a start symbol. A public nonterminal symbol is never renamed, so it can be referred to by modules
other than its defining module.

In fact, it is permitted to split the definition of a public nonterminal symbol, over multiple modules and/or
within a single module. That is, a public nonterminal symbolN can have multiple definitions, within one module
and/or in distinct modules. All of these definitions are joined using the choice (|) operator. For instance, in the
grammar of a programming language, the definition of the nonterminal symbol expression could be split into
multiple modules, where one module groups the expression forms that have to do with arithmetic, one module
groups those that concern function definitions and function calls, one module groups those that concern object
definitions and method calls, and so on.

Tokens aside Another use of modularity consists in placing all %token declarations in one module, and
the actual grammar specification in another module. The module that contains the token definitions can then
be shared, making it easier to define multiple parsers that accept the same type of tokens. (On this topic, see
demos/calc-two.)

5.2 Parameterizing rules
A rule (that is, the definition of a nonterminal symbol) can be parameterized over an arbitrary number of
symbols, which are referred to as formal parameters.

Example For instance, here is the definition of the parameterized nonterminal symbol option, taken from the
standard library (§5.4):

%public option(X):
| { None }
| x = X { Some x }

This definition states that option(X) expands to either the empty string, producing the semantic value None, or
to the string X, producing the semantic value Some x, where x is the semantic value of X. In this definition, the
symbol X is abstract: it stands for an arbitrary terminal or nonterminal symbol. The definition is made public,
so option can be referred to within client modules.

A client who wishes to use option simply refers to it, together with an actual parameter – a symbol that is
intended to replace X. For instance, here is how one might define a sequence of declarations, preceded with
optional commas:

declarations:
| { [] }
| ds = declarations; option(COMMA); d = declaration { d :: ds }

This definition states that declarations expands either to the empty string or to declarations followed by an
optional comma followed by declaration. (Here, COMMA is presumably a terminal symbol.) When this rule is
encountered, the definition of option is instantiated: that is, a copy of the definition, where COMMA replaces X,
is produced. Things behave exactly as if one had written:

optional_comma:
| { None }
| x = COMMA { Some x }

declarations:
| { [] }
| ds = declarations; optional_comma; d = declaration { d :: ds }

Note that, even though COMMA presumably has been declared as a token with no semantic value, writing
x = COMMA is legal, and binds x to the unit value. This design choice ensures that the definition of option
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actual? is syntactic sugar for option(actual)
actual+ is syntactic sugar for nonempty_list(actual)
actual* is syntactic sugar for list(actual)

Figure 2. Syntactic sugar for simulating regular expressions, also known as EBNF

makes sense regardless of the nature of X: that is, X can be instantiated with a terminal symbol, with or without
a semantic value, or with a nonterminal symbol.

Parameterization in general In general, the definition of a nonterminal symbol N can be parameterized with
an arbitrary number of formal parameters. When N is referred to within a production, it must be applied to the
same number of actuals. In general, an actual is:

• either a single symbol, which can be a terminal symbol, a nonterminal symbol, or a formal parameter;
• or an application of such a symbol to a number of actuals.

For instance, here is a rule whose single production consists of a single producer, which contains several,
nested actuals. (This example is discussed again in §5.4.)

plist(X):
| xs = loption(delimited(LPAREN, separated_nonempty_list(COMMA, X), RPAREN)) { xs }

Applications of the parameterized nonterminal symbols option, nonempty_list, and list, which are defined in
the standard library (§5.4), can be written using a familiar, regular-expression like syntax (Figure 2).

Higher-order parameters A formal parameter can itself expect parameters. For instance, here is a rule that
defines the syntax of procedures in an imaginary programming language:

procedure(list):
| PROCEDURE ID list(formal) SEMICOLON block SEMICOLON { . . . }

This rule states that the token ID, which represents the name of the procedure, should be followed with
a list of formal parameters. (The definitions of the nonterminal symbols formal and block are not shown.)
However, because list is a formal parameter, as opposed to a concrete nonterminal symbol defined elsewhere,
this definition does not specify how the list is laid out: which token, if any, is used to separate, or terminate,
list elements? is the list allowed to be empty? and so on. A more concrete notion of procedure is obtained
by instantiating the formal parameter list: for instance, procedure(plist), where plist is the parameterized
nonterminal symbol defined earlier, is a valid application.

Consistency Definitions and uses of parameterized nonterminal symbols are checked for consistency before
they are expanded away. In short, it is checked that, wherever a nonterminal symbol is used, it is supplied
with actual arguments in appropriate number and of appropriate nature. This guarantees that expansion of
parameterized definitions terminates and produces a well-formed grammar as its outcome.

5.3 Inlining
It is well-known that the following grammar of arithmetic expressions does not work as expected: that is, in
spite of the priority declarations, it has shift/reduce conflicts.
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%token < int > INT
%token PLUS TIMES
%left PLUS
%left TIMES

%%

expression:
| i = INT { i }
| e = expression; o = op; f = expression { o e f }

op:
| PLUS { ( + ) }
| TIMES { ( * ) }

The trouble is, the precedence level of the production expression→ expression op expression is undefined, and
there is no sensible way of defining it via a %prec declaration, since the desired level really depends upon the
symbol that was recognized by op: was it PLUS or TIMES?

The standard workaround is to abandon the definition of op as a separate nonterminal symbol, and to inline
its definition into the definition of expression, like this:

expression:
| i = INT { i }
| e = expression; PLUS; f = expression { e + f }
| e = expression; TIMES; f = expression { e * f }

This avoids the shift/reduce conflict, but gives up some of the original specification’s structure, which,
in realistic situations, can be damageable. Fortunately, Menhir offers a way of avoiding the conflict without
manually transforming the grammar, by declaring that the nonterminal symbol op should be inlined:

expression:
| i = INT { i }
| e = expression; o = op; f = expression { o e f }

%inline op:
| PLUS { ( + ) }
| TIMES { ( * ) }

The %inline keyword causes all references to op to be replaced with its definition. In this example, the definition
of op involves two productions, one that develops to PLUS and one that expands to TIMES, so every production
that refers to op is effectively turned into two productions, one that refers to PLUS and one that refers to TIMES.
After inlining, op disappears and expression has three productions: that is, the result of inlining is exactly the
manual workaround shown above.

In some situations, inlining can also help recover a slight efficiency margin. For instance, the definition:

%inline plist(X):
| xs = loption(delimited(LPAREN, separated_nonempty_list(COMMA, X), RPAREN)) { xs }

effectively makes plist(X) an alias for the right-hand side loption(. . .). Without the %inline keyword, the
language recognized by the grammar would be the same, but the LR automaton would probably have one
more state and would perform one more reduction at run time.

The %inline keyword does not affect the computation of positions (§7). The same positions are computed,
regardless of where %inline keywords are placed.

If the semantic actions have side effects, the %inline keyword can affect the order in which these side effects
take place. In the example of op and expression above, if for some reason the semantic action associated with op
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Name Recognizes Produces Comment

endrule(X) X α, if X : α (inlined)
midrule(X) X α, if X : α

option(X) ε | X α option, if X : α (also X?)
ioption(X) ε | X α option, if X : α (inlined)
boption(X) ε | X bool
loption(X) ε | X α list, if X : α list

pair(X, Y) X Y α× β, if X : α and Y : β
separated_pair(X, sep, Y) X sep Y α× β, if X : α and Y : β
preceded(opening, X) opening X α, if X : α
terminated(X, closing) X closing α, if X : α
delimited(opening, X, closing) opening X closing α, if X : α

list(X) a possibly empty sequence of X’s α list, if X : α (also X*)
nonempty_list(X) a nonempty sequence of X’s α list, if X : α (also X+)
separated_list(sep, X) a possibly empty sequence of X’s

separated with sep’s
α list, if X : α

separated_nonempty_list(sep, X) a nonempty sequence of X’s
separated with sep’s

α list, if X : α

rev(X) X α list, if X : α list (inlined)
flatten(X) X α list, if X : α list list (inlined)
append(X, Y) X Y α list, if X, Y : α list (inlined)

Figure 3. Summary of the standard library; see standard.mly for details

has a side effect (such as updating a global variable, or printing a message), then, by inlining op, we delay this
side effect, which takes place after the second operand has been recognized, whereas in the absence of inlining
it takes place as soon as the operator has been recognized.

5.4 The standard library
Once equipped with a rudimentary module system (§5.1), parameterization (§5.2), and inlining (§5.3), it is
straightforward to propose a collection of commonly used definitions, such as options, sequences, lists, and so
on. This standard library is joined, by default, with every grammar specification. A summary of the nonterminal
symbols offered by the standard library appears in Figure 3. See also the short-hands documented in Figure 2.

By relying on the standard library, a client module can concisely define more elaborate notions. For instance,
the following rule:

%inline plist(X):
| xs = loption(delimited(LPAREN, separated_nonempty_list(COMMA, X), RPAREN)) { xs }

causes plist(X) to recognize a list of X’s, where the empty list is represented by the empty string, and a non-
empty list is delimited with parentheses and comma-separated.

The standard library is stored in a file named standard.mly, which is installed at the same time as Menhir.
By default, Menhir attempts to find this file in the directory where this file was installed. This can be overridden
by setting the environment variable $MENHIR_STDLIB. If defined, this variable should contain the path of the
directory where standard.mly is stored. (This path may end with a / character.) This can be overridden also
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via the command line switch --stdlib. The command line switch --no-stdlib instructs Menhir to not load
the standard library.

The meaning of the symbols defined in the standard library (Figure 3) should be clear in most cases. Yet, the
symbols endrule(X) and midrule(X) deserve an explanation. Both take an argument X, which typically will be
instantiated with an anonymous rule (§4.2.4). Both are defined as a synonym for X. In both cases, this allows
placing an anonymous subrule in the middle of a rule.

For instance, the following is a well-formed production:

cat endrule(dog {OCaml code1}) cow {OCaml code2}

This production consists of three producers, namely cat and endrule(dog { OCaml code1 }) and cow, and a
semantic action { OCaml code2 }. Because endrule(X) is declared as an %inline synonym for X, the expansion
of anonymous rules (§4.2.4), followed with the expansion of %inline symbols (§5.3), transforms the above
production into the following:

cat dog cow {OCaml code1; OCaml code2}

Note that OCaml code1 moves to the end of the rule, which means that this code is executed only after cat, dog
and cow have been recognized. In this example, the use of endrule is rather pointless, as the expanded code
is more concise and clearer than the original code. Still, endrule can be useful when its actual argument is an
anonymous rule with multiple branches.

midrule is used in exactly the same way as endrule, but its expansion is different. For instance, the following
is a well-formed production:

cat midrule({OCaml code1}) cow {OCaml code2}

(There is no dog in this example; this is intentional.) Because midrule(X) is a synonym for X, but is not declared
%inline, the expansion of anonymous rules (§4.2.4), followed with the expansion of %inline symbols (§5.3),
transforms the above production into the following:

cat xxx cow {OCaml code2}

where the fresh nonterminal symbol xxx is separately defined by the rule xxx : {OCaml code1}. Thus, xxx
recognizes the empty string, and as soon as it is recognized, OCaml code1 is executed. This is known as a
“mid-rule action”.

6. Conflicts
When a shift/reduce or reduce/reduce conflict is detected, it is classified as either benign, if it can be resolved
by consulting user-supplied precedence declarations, or severe, if it cannot. Benign conflicts are not reported.
Severe conflicts are reported and, if the --explain switch is on, explained.

6.1 When is a conflict benign?
A shift/reduce conflict involves a single token (the one that one might wish to shift) and one or more productions
(those that one might wish to reduce). When such a conflict is detected, the precedence level (§4.1.4, §4.2.1) of
these entities are looked up and compared as follows:

1. if only one production is involved, and if it has higher priority than the token, then the conflict is resolved in
favor of reduction.

2. if only one production is involved, and if it has the same priority as the token, then the associativity status of
the token is looked up:
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%token IF THEN ELSE
%start < expression > expression

%%

expression:
| . . .
| IF b = expression THEN e = expression { . . . }
| IF b = expression THEN e = expression ELSE f = expression { . . . }
| . . .

Figure 4. Basic example of a shift/reduce conflict

(a) if the token was declared nonassociative, then the conflict is resolved in favor of neither action, that is, a
syntax error will be signaled if this token shows up when this production is about to be reduced;

(b) if the token was declared left-associative, then the conflict is resolved in favor of reduction;
(c) if the token was declared right-associative, then the conflict is resolved in favor of shifting.

3. if multiple productions are involved, and if, considered one by one, they all cause the conflict to be resolved
in the same way (that is, either in favor in shifting, or in favor of neither), then the conflict is resolved in that
way.

In either of these cases, the conflict is considered benign. Otherwise, it is considered severe. Note that a
reduce/reduce conflict is always considered severe, unless it happens to be subsumed by a benign multi-way
shift/reduce conflict (item 3 above).

6.2 How are severe conflicts explained?
When the --dump switch is on, a description of the automaton is written to the .automaton file. Severe conflicts
are shown as part of this description. Fortunately, there is also a way of understanding conflicts in terms of the
grammar, rather than in terms of the automaton. When the --explain switch is on, a textual explanation is
written to the .conflicts file.

Not all conflicts are explained in this file: instead, only one conflict per automaton state is explained. This is
done partly in the interest of brevity, but also because Pager’s algorithm can create artificial conflicts in a state
that already contains a true LR(1) conflict; thus, one cannot hope in general to explain all of the conflicts that
appear in the automaton. As a result of this policy, once all conflicts explained in the .conflicts file have been
fixed, one might need to run Menhir again to produce yet more conflict explanations.

How the conflict state is reached Figure 4 shows a grammar specification with a typical shift/reduce conflict.
When this specification is analyzed, the conflict is detected, and an explanation is written to the .conflicts
file. The explanation first indicates in which state the conflict lies by showing how that state is reached. Here, it
is reached after recognizing the following string of terminal and nonterminal symbols—the conflict string:

IF expression THEN IF expression THEN expression

Allowing the conflict string to contain both nonterminal and terminal symbols usually makes it shorter and
more readable. If desired, a conflict string composed purely of terminal symbols could be obtained by replacing
each occurrence of a nonterminal symbol N with an arbitrary N -sentence.

The conflict string can be thought of as a path that leads from one of the automaton’s start states to the
conflict state. When multiple such paths exist, the one that is displayed is chosen shortest. Nevertheless, it
may sometimes be quite long. In that case, artificially (and temporarily) declaring some existing nonterminal
symbols to be start symbols has the effect of adding new start states to the automaton and can help produce
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expression

IF expression THEN expression

IF expression THEN expression ELSE expression

Figure 5. A partial derivation tree that justifies shifting

expression
IF expression THEN expression

IF expression THEN expression . ELSE expression

Figure 6. A textual version of the tree in Figure 5

shorter conflict strings. Here, expression was declared to be a start symbol, which is why the conflict string is
quite short.

In addition to the conflict string, the .conflicts file also states that the conflict token is ELSE. That is,
when the automaton has recognized the conflict string and when the lookahead token (the next token on the
input stream) is ELSE, a conflict arises. A conflict corresponds to a choice: the automaton is faced with several
possible actions, and does not know which one should be taken. This indicates that the grammar is not LR(1).
The grammar may or may not be inherently ambiguous.

In our example, the conflict string and the conflict token are enough to understand why there is a conflict:
when two IF constructs are nested, it is ambiguous which of the two constructs the ELSE branch should be
associated with. Nevertheless, the .conflicts file provides further information: it explicitly shows that there
exists a conflict, by proving that two distinct actions are possible. Here, one of these actions consists in shifting,
while the other consists in reducing: this is a shift/reduce conflict.

A proof takes the form of a partial derivation tree whose fringe begins with the conflict string, followed
by the conflict token. A derivation tree is a tree whose nodes are labeled with symbols. The root node carries
a start symbol. A node that carries a terminal symbol is considered a leaf, and has no children. A node that
carries a nonterminal symbol N either is considered a leaf, and has no children; or is not considered a leaf, and
has n children, where n ≥ 0, labeled x1, . . . , xn, where N → x1, . . . , xn is a production. The fringe of a partial
derivation tree is the string of terminal and nonterminal symbols carried by the tree’s leaves. A string of terminal
and nonterminal symbols that is the fringe of some partial derivation tree is a sentential form.

Why shifting is legal In our example, the proof that shifting is possible is the derivation tree shown in Figures 5
and 6. At the root of the tree is the grammar’s start symbol, expression. This symbol develops into the string
IF expression THEN expression, which forms the tree’s second level. The second occurrence of expression in
that string develops into IF expression THEN expression ELSE expression, which forms the tree’s last level.
The tree’s fringe, a sentential form, is the string IF expression THEN IF expression THEN expression ELSE
expression. As announced earlier, it begins with the conflict string IF expression THEN IF expression THEN
expression, followed with the conflict token ELSE.

In Figure 6, the end of the conflict string is materialized with a dot. Note that this dot does not occupy the
rightmost position in the tree’s last level. In other words, the conflict token (ELSE) itself occurs on the tree’s
last level. In practical terms, this means that, after the automaton has recognized the conflict string and peeked
at the conflict token, it makes sense for it to shift that token.
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expression

IF expression THEN expression

IF expression THEN expression

ELSE expression

Figure 7. A partial derivation tree that justifies reducing

expression
IF expression THEN expression ELSE expression // lookahead token appears

IF expression THEN expression .

Figure 8. A textual version of the tree in Figure 7

decls

decl

DATA UIDENT EQUALS tycon_expr

tycon_item

UIDENT opt_type_exprs

opt_semi decls

Figure 9. A partial derivation tree that justifies reducing

Why reducing is legal In our example, the proof that shifting is possible is the derivation tree shown in
Figures 7 and 8. Again, the sentential form found at the fringe of the tree begins with the conflict string, followed
with the conflict token.

Again, in Figure 8, the end of the conflict string is materialized with a dot. Note that, this time, the dot
occupies the rightmost position in the tree’s last level. In other words, the conflict token (ELSE) appeared on an
earlier level (here, on the second level). This fact is emphasized by the comment // lookahead token appears found
at the second level. In practical terms, this means that, after the automaton has recognized the conflict string
and peeked at the conflict token, it makes sense for it to reduce the production that corresponds to the tree’s last
level—here, the production is expression→ IF expression THEN expression.

An example of a more complex derivation tree Figures 9 and 10 show a partial derivation tree that justifies
reduction in a more complex situation. (This derivation tree is relative to a grammar that is not shown.) Here,
the conflict string is DATA UIDENT EQUALS UIDENT; the conflict token is LIDENT. It is quite clear that the
fringe of the tree begins with the conflict string. However, in this case, the fringe does not explicitly exhibit the
conflict token. Let us examine the tree more closely and answer the question: following UIDENT, what’s the
next terminal symbol on the fringe?
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decls
decl opt_semi decls // lookahead token appears because opt_semi can vanish and decls can begin with LIDENT
DATA UIDENT EQUALS tycon_expr // lookahead token is inherited

tycon_item // lookahead token is inherited
UIDENT opt_type_exprs // lookahead token is inherited

.

Figure 10. A textual version of the tree in Figure 9

First, note that opt_type_exprs is not a leaf node, even though it has no children. The grammar contains the
production opt_type_exprs → ε: the nonterminal symbol opt_type_exprs develops to the empty string. (This is
made clear in Figure 10, where a single dot appears immediately below opt_type_exprs.) Thus, opt_type_exprs
is not part of the fringe.

Next, note that opt_type_exprs is the rightmost symbol within its level. Thus, in order to find the next symbol
on the fringe, we have to look up one level. This is the meaning of the comment // lookahead token is inherited.
Similarly, tycon_item and tycon_expr appear rightmost within their level, so we again have to look further up.

This brings us back to the tree’s second level. There, decl is not the rightmost symbol: next to it, we find
opt_semi and decls. Does this mean that opt_semi is the next symbol on the fringe? Yes and no. opt_semi is
a nonterminal symbol, but we are really interested in finding out what the next terminal symbol on the fringe
could be. The partial derivation tree shown in Figures 9 and 10 does not explicitly answer this question. In order
to answer it, we need to know more about opt_semi and decls.

Here, opt_semi stands (as one might have guessed) for an optional semicolon, so the grammar contains a
production opt_semi → ε. This is indicated by the comment // opt_semi can vanish. (Nonterminal symbols that
generate ε are also said to be nullable.) Thus, one could choose to turn this partial derivation tree into a larger
one by developing opt_semi into ε, making it a non-leaf node. That would yield a new partial derivation tree
where the next symbol on the fringe, following UIDENT, is decls.

Now, what about decls? Again, it is a nonterminal symbol, and we are really interested in finding out what the
next terminal symbol on the fringe could be. Again, we need to imagine how this partial derivation tree could
be turned into a larger one by developing decls. Here, the grammar happens to contain a production of the form
decls→ LIDENT . . . This is indicated by the comment // decls can begin with LIDENT. Thus, by developing decls,
it is possible to construct a partial derivation tree where the next symbol on the fringe, following UIDENT, is
LIDENT. This is precisely the conflict token.

To sum up, there exists a partial derivation tree whose fringe begins with the conflict string, followed with
the conflict token. Furthermore, in that derivation tree, the dot occupies the rightmost position in the last level.
As in our previous example, this means that, after the automaton has recognized the conflict string and peeked
at the conflict token, it makes sense for it to reduce the production that corresponds to the tree’s last level—here,
the production is opt_type_exprs→ ε.

Greatest common factor among derivation trees Understanding conflicts requires comparing two (or more)
derivation trees. It is frequent for these trees to exhibit a common factor, that is, to exhibit identical structure
near the top of the tree, and to differ only below a specific node. Manual identification of that node can be
tedious, so Menhir performs this work automatically. When explaining a n-way conflict, it first displays the
greatest common factor of the n derivation trees. A question mark symbol (?) is used to identify the node where
the trees begin to differ. Then, Menhir displays each of the n derivation trees, without their common factor –
that is, it displays n sub-trees that actually begin to differ at the root. This should make visual comparisons
significantly easier.
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6.3 How are severe conflicts resolved in the end?
It is unspecified how severe conflicts are resolved. Menhir attempts to mimic ocamlyacc’s specification,
that is, to resolve shift/reduce conflicts in favor of shifting, and to resolve reduce/reduce conflicts in favor
of the production that textually appears earliest in the grammar specification. However, this specification is
inconsistent in case of three-way conflicts, that is, conflicts that simultaneously involve a shift action and several
reduction actions. Furthermore, textual precedence can be undefined when the grammar specification is split
over multiple modules. In short, Menhir’s philosophy is that

severe conflicts should not be tolerated,

so you should not care how they are resolved.

6.4 End-of-stream conflicts
Menhir’s treatment of the end of the token stream is (believed to be) fully compatible with ocamlyacc’s. Yet,
Menhir attempts to be more user-friendly by warning about a class of so-called “end-of-stream conflicts”.

How the end of stream is handled In many textbooks on parsing, it is assumed that the lexical analyzer, which
produces the token stream, produces a special token, written #, to signal that the end of the token stream has
been reached. A parser generator can take advantage of this by transforming the grammar: for each start symbol
S in the original grammar, a new start symbol S’ is defined, together with the production S′ → S#. The symbol
S is no longer a start symbol in the new grammar. This means that the parser will accept a sentence derived
from S only if it is immediately followed by the end of the token stream.

This approach has the advantage of simplicity. However, ocamlyacc and Menhir do not follow it, for several
reasons. Perhaps the most convincing one is that it is not flexible enough: sometimes, it is desirable to recognize
a sentence derived from S, without requiring that it be followed by the end of the token stream: this is the case,
for instance, when reading commands, one by one, on the standard input channel. In that case, there is no end
of stream: the token stream is conceptually infinite. Furthermore, after a command has been recognized, we do
not wish to examine the next token, because doing so might cause the program to block, waiting for more input.

In short, ocamlyacc and Menhir’s approach is to recognize a sentence derived from S and to not look, if
possible, at what follows. However, this is possible only if the definition of S is such that the end of an S-
sentence is identifiable without knowledge of the lookahead token. When the definition of S does not satisfy
this criterion, and end-of-stream conflict arises: after a potential S-sentence has been read, there can be a tension
between consulting the next token, in order to determine whether the sentence is continued, and not consulting
the next token, because the sentence might be over and whatever follows should not be read. Menhir warns
about end-of-stream conflicts, whereas ocamlyacc does not.

A definition of end-of-stream conflicts Technically, Menhir proceeds as follows. A # symbol is introduced.
It is, however, only a pseudo-token: it is never produced by the lexical analyzer. For each start symbol S in the
original grammar, a new start symbol S’ is defined, together with the production S′ → S. The corresponding
start state of the LR(1) automaton is composed of the LR(1) item S′ → . S [#]. That is, the pseudo-token
# initially appears in the lookahead set, indicating that we expect to be done after recognizing an S-sentence.
During the construction of the LR(1) automaton, this lookahead set is inherited by other items, with the effect
that, in the end, the automaton has:

• shift actions only on physical tokens; and
• reduce actions either on physical tokens or on the pseudo-token #.

A state of the automaton has a reduce action on # if, in that state, an S-sentence has been read, so that the
job is potentially finished. A state has a shift or reduce action on a physical token if, in that state, more tokens
potentially need to be read before an S-sentence is recognized. If a state has a reduce action on #, then that
action should be taken without requesting the next token from the lexical analyzer. On the other hand, if a state
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has a shift or reduce action on a physical token, then the lookahead token must be consulted in order to determine
if that action should be taken.

An end-of-stream conflict arises when a state has distinct actions on # and on at least one physical token.
In short, this means that the end of an S-sentence cannot be unambiguously identified without examining one
extra token. Menhir’s default behavior, in that case, is to suppress the action on #, so that more input is always
requested.

Example Figure 11 shows a grammar that has end-of-stream conflicts. When this grammar is processed,
Menhir warns about these conflicts, and further warns that expr is never accepted. Let us explain.

Part of the corresponding automaton, as described in the .automaton file, is shown in Figure 12. Explana-
tions at the end of the .automaton file (not shown) point out that states 6 and 2 have an end-of-stream conflict.
Indeed, both states have distinct actions on # and on the physical token TIMES. It is interesting to note that,
even though state 4 has actions on # and on physical tokens, it does not have an end-of-stream conflict. This is
because the action taken in state 4 is always to reduce the production expr → expr TIMES expr, regardless of
the lookahead token.

By default, Menhir produces a parser where end-of-stream conflicts are resolved in favor of looking ahead:
that is, the problematic reduce actions on # are suppressed. This means, in particular, that the accept action
in state 2, which corresponds to reducing the production expr → expr’, is suppressed. This explains why the
symbol expr is never accepted: because expressions do not have an unambiguous end marker, the parser will
always request one more token and will never stop.

In order to avoid this end-of-stream conflict, the standard solution is to introduce a new token, say END, and
to use it as an end marker for expressions. The END token could be generated by the lexical analyzer when
it encounters the actual end of stream, or it could correspond to a piece of concrete syntax, say, a line feed
character, a semicolon, or an end keyword. The solution is shown in Figure 13.

7. Positions
When an ocamllex-generated lexical analyzer produces a token, it updates two fields, named lex_start_p
and lex_curr_p, in its environment record, whose type is Lexing.lexbuf. Each of these fields holds a value
of type Lexing.position. Together, they represent the token’s start and end positions within the text that is
being scanned. These fields are read by Menhir after calling the lexical analyzer, so it is the lexical analyzer’s
responsibility to correctly set these fields.

A position consists mainly of an offset (the position’s pos_cnum field), but also holds information about the
current file name, the current line number, and the current offset within the current line. (Not all ocamllex-
generated analyzers keep this extra information up to date. This must be explicitly programmed by the author
of the lexical analyzer.)

This mechanism allows associating pairs of positions with terminal symbols. If desired, Menhir automatically
extends it to nonterminal symbols as well. That is, it offers a mechanism for associating pairs of positions
with terminal or nonterminal symbols. This is done by making a set of keywords available to semantic actions
(Figure 14). Note that these keywords are not available outside of a semantic action: in particular, they cannot
be used within an OCaml header. Note also that OCaml’s standard library module Parsing is deprecated. The
functions that it offers can be called, but will return dummy positions.

We remark that, if the current production has an empty right-hand side, then $startpos and $endpos are
equal, and (by convention) are the end position of the most recently parsed symbol (that is, the symbol that
happens to be on top of the automaton’s stack when this production is reduced). If the current production has
a nonempty right-hand side, then $startpos is the same as $startpos($1) and $endpos is the same as
$endpos($n), where n is the length of the right-hand side.

More generally, if the current production has matched a sentence of length zero, then $startpos and
$endpos will be equal, and conversely.
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%token < int > INT
%token PLUS TIMES
%left PLUS
%left TIMES
%start < int > expr
%%
expr:

| i = INT { i }
| e1 = expr PLUS e2 = expr { e1 + e2 }
| e1 = expr TIMES e2 = expr { e1 * e2 }

Figure 11. Basic example of an end-of-stream conflict

State 6:
expr -> expr . PLUS expr [ # TIMES PLUS ]
expr -> expr PLUS expr . [ # TIMES PLUS ]
expr -> expr . TIMES expr [ # TIMES PLUS ]
-- On TIMES shift to state 3
-- On # PLUS reduce production expr -> expr PLUS expr

State 4:
expr -> expr . PLUS expr [ # TIMES PLUS ]
expr -> expr . TIMES expr [ # TIMES PLUS ]
expr -> expr TIMES expr . [ # TIMES PLUS ]
-- On # TIMES PLUS reduce production expr -> expr TIMES expr

State 2:
expr’ -> expr . [ # ]
expr -> expr . PLUS expr [ # TIMES PLUS ]
expr -> expr . TIMES expr [ # TIMES PLUS ]
-- On TIMES shift to state 3
-- On PLUS shift to state 5
-- On # accept expr

Figure 12. Part of an LR automaton for the grammar in Figure 11

. . .
%token END
%start < int > main // instead of expr
%%
main:

| e = expr END { e }
expr:

| . . .

Figure 13. Fixing the grammar specification in Figure 11

25 20181113



$startpos start position of the first symbol in the production’s right-hand side, if there is one;
end position of the most recently parsed symbol, otherwise

$endpos end position of the last symbol in the production’s right-hand side, if there is one;
end position of the most recently parsed symbol, otherwise

$startpos( $i | id ) start position of the symbol named $i or id
$endpos( $i | id ) end position of the symbol named $i or id
$symbolstartpos start position of the leftmost symbol id such that $startpos(id) != $endpos(id);

if there is no such symbol, $endpos

$startofs
$endofs
$startofs( $i | id ) same as above, but produce an integer offset instead of a position
$endofs( $i | id )
$symbolstartofs

$loc stands for the pair ($startpos, $endpos)
$loc( id ) stands for the pair ($startpos( id ), $endpos( id ))
$sloc stands for the pair ($symbolstartpos, $endpos)

Figure 14. Position-related keywords

symbol_start_pos() $symbolstartpos
symbol_end_pos() $endpos
rhs_start_pos i $startpos($i) (1 ≤ i ≤ n)
rhs_end_pos i $endpos($i) (1 ≤ i ≤ n)
symbol_start() $symbolstartofs
symbol_end() $endofs
rhs_start i $startofs($i) (1 ≤ i ≤ n)
rhs_end i $endofs($i) (1 ≤ i ≤ n)

Figure 15. Translating position-related incantations from ocamlyacc to Menhir

The position $startpos is sometimes “further towards the left” than one would like. For example, in the
following production:

declaration: modifier? variable { $startpos }

the keyword $startpos represents the start position of the optional modifier modifier?. If this modifier
turns out to be absent, then its start position is (by definition) the end position of the most recently parsed
symbol. This may not be what is desired: perhaps the user would prefer in this case to use the start position
of the symbol variable. This is achieved by using $symbolstartpos instead of $startpos. By definition,
$symbolstartpos is the start position of the leftmost symbol whose start and end positions differ. In this
example, the computation of $symbolstartpos skips the absent modifier, whose start and end positions
coincide, and returns the start position of the symbol variable (assuming this symbol has distinct start and end
positions).

There is no keyword $symbolendpos. Indeed, the problem with $startpos is due to the asymmetry in the
definition of $startpos and $endpos in the case of an empty right-hand side, and does not affect $endpos.
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The positions computed by Menhir are exactly the same as those computed by ocamlyacc1. More precisely,
Figure 15 sums up how to translate a call to the Parsing module, as used in an ocamlyacc grammar, to a
Menhir keyword.

We note that Menhir’s $startpos does not appear in the right-hand column in Figure 15. In other words,
Menhir’s $startpos does not correspond exactly to any of the ocamlyacc function calls. An exact ocamlyacc
equivalent of $startpos is rhs_start_pos 1 if the current production has a nonempty right-hand side and
symbol_start_pos() if it has an empty right-hand side.

Finally, we remark that Menhir’s %inline keyword (§5.3) does not affect the computation of positions. The
same positions are computed, regardless of where %inline keywords are placed.

8. Using Menhir as an interpreter
When --interpret is set, Menhir no longer behaves as a compiler. Instead, it acts as an interpreter. That is, it
repeatedly:

• reads a sentence off the standard input channel;
• parses this sentence, according to the grammar;
• displays an outcome.

This process stops when the end of the input channel is reached.

8.1 Sentences
The syntax of sentences is as follows:

sentence ::= [ lid : ] uid . . . uid \n

Less formally, a sentence is a sequence of zero or more terminal symbols (uid’s), separated with whitespace,
terminated with a newline character, and optionally preceded with a non-terminal start symbol (lid). This non-
terminal symbol can be omitted if, and only if, the grammar only has one start symbol.

For instance, here are four valid sentences for the grammar of arithmetic expressions found in the directory
demos/calc:

main: INT PLUS INT EOL
INT PLUS INT
INT PLUS PLUS INT EOL
INT PLUS PLUS

In the first sentence, the start symbol main was explicitly specified. In the other sentences, it was omitted,
which is permitted, because this grammar has no start symbol other than main. The first sentence is a stream of
four terminal symbols, namely INT, PLUS, INT, and EOL. These terminal symbols must be provided under their
symbolic names. Writing, say, “12+32\n” instead of INT PLUS INT EOL is not permitted. Menhir would not
be able to make sense of such a concrete notation, since it does not have a lexer for it.

8.2 Outcomes
As soon as Menhir is able to read a complete sentence off the standard input channel (that is, as soon as it
finds the newline character that ends the sentence), it parses the sentence according to whichever grammar was
specified on the command line, and displays an outcome.

An outcome is one of the following:

1 The computation of $symbolstartpos is optimized by Menhir under two assumptions about the lexer. First, Menhir assumes that the
lexer never produces a token whose start and end positions are equal. Second, Menhir assumes that two positions produced by the lexer
are equal if and only if they are physically equal. If the lexer violates either of these assumptions, the computation of $symbolstartpos
could produce a result that differs from Parsing.symbol_start_pos().
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• ACCEPT: a prefix of the sentence was successfully parsed; a parser generated by Menhir would successfully
stop and produce a semantic value;
• OVERSHOOT: the end of the sentence was reached before it could be accepted; a parser generated by Menhir

would request a non-existent “next token” from the lexer, causing it to fail or block;
• REJECT: the sentence was not accepted; a parser generated by Menhir would raise the exception Error.

When --interpret-show-cst is set, each ACCEPT outcome is followed with a concrete syntax tree. A
concrete syntax tree is either a leaf or a node. A leaf is either a terminal symbol or error. A node is annotated with
a non-terminal symbol, and carries a sequence of immediate descendants that correspond to a valid expansion
of this non-terminal symbol. Menhir’s notation for concrete syntax trees is as follows:

cst ::= uid
error
[ lid : cst . . . cst ]

For instance, if one wished to parse the example sentences of §8.1 using the grammar of arithmetic
expressions in demos/calc, one could invoke Menhir as follows:

$ menhir --interpret --interpret-show-cst demos/calc/parser.mly
main: INT PLUS INT EOL
ACCEPT
[main: [expr: [expr: INT] PLUS [expr: INT]] EOL]
INT PLUS INT
OVERSHOOT
INT PLUS PLUS INT EOL
REJECT
INT PLUS PLUS
REJECT

(Here, Menhir’s input—the sentences provided by the user on the standard input channel— is shown intermixed
with Menhir’s output—the outcomes printed by Menhir on the standard output channel.) The first sentence is
valid, and accepted; a concrete syntax tree is displayed. The second sentence is incomplete, because the grammar
specifies that a valid expansion of main ends with the terminal symbol EOL; hence, the outcome is OVERSHOOT.
The third sentence is invalid, because of the repeated occurrence of the terminal symbol PLUS; the outcome is
REJECT. The fourth sentence, a prefix of the third one, is rejected for the same reason.

8.3 Remarks
Using Menhir as an interpreter offers an easy way of debugging your grammar. For instance, if one wished
to check that addition is considered left-associative, as requested by the %left directive found in the file
demos/calc/parser.mly, one could submit the following sentence:

$ ./menhir --interpret --interpret-show-cst ../demos/calc/parser.mly
INT PLUS INT PLUS INT EOL
ACCEPT
[main:

[expr: [expr: [expr: INT] PLUS [expr: INT]] PLUS [expr: INT]]
EOL

]

The concrete syntax tree displayed by Menhir is skewed towards the left, as desired.
The switches --interpret and --trace can be used in conjunction. When --trace is set, the interpreter

logs its actions to the standard error channel.
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9. Generated API
When Menhir processes a grammar specification, say parser.mly, it produces one OCaml module, Parser,
whose code resides in the file parser.ml and whose signature resides in the file parser.mli. We now review
this signature. For simplicity, we assume that the grammar specification has just one start symbol main, whose
OCaml type is thing.

9.1 Monolithic API
The monolithic API defines the type token, the exception Error, and the parsing function main, named after
the start symbol of the grammar.

The type token is an algebraic data type. A value of type token represents a terminal symbol and its semantic
value. For instance, if the grammar contains the declarations %token A and %token<int> B, then the generated
file parser.mli contains the following definition:

type token =
| A
| B of int

If --only-tokens is specified on the command line, the type token is generated, and the rest is omitted. On the
contrary, if --external-tokens is used, the type token is omitted, but the rest (described below) is generated.

The exception Error carries no argument. It is raised by the parsing function main (described below) when
a syntax error is detected.

exception Error

Next comes one parsing function for each start symbol of the grammar. Here, we have assumed that there is
one start symbol, named main, so the generated file parser.mli contains the following declaration:

val main: (Lexing.lexbuf -> token) -> Lexing.lexbuf -> thing

This function expects two arguments, namely: a lexer, which typically is produced by ocamllex and has type
Lexing.lexbuf -> token; and a lexing buffer, which has type Lexing.lexbuf. This API is compatible with
ocamlyacc. (For information on using Menhir without ocamllex, please consult §16.) This API is “monolithic”
in the sense that there is just one function, which does everything: it pulls tokens from the lexer, parses, and
eventually returns a semantic value (or fails by throwing the exception Error).

9.2 Incremental API
If --table is set, Menhir offers an incremental API in addition to the monolithic API. In this API, control is
inverted. The parser does not have access to the lexer. Instead, when the parser needs the next token, it stops and
returns its current state to the user. The user is then responsible for obtaining this token (typically by invoking
the lexer) and resuming the parser from that state. The directory demos/calc-incremental contains a demo
that illustrates the use of the incremental API.

This API is “incremental” in the sense that the user has access to a sequence of the intermediate states of
the parser. Assuming that semantic values are immutable, a parser state is a persistent data structure: it can be
stored and used multiple times, if desired. This enables applications such as “live parsing”, where a buffer is
continuously parsed while it is being edited. The parser can be re-started in the middle of the buffer whenever
the user edits a character. Because two successive parser states share most of their data in memory, a list of n
successive parser states occupies only O(n) space in memory.

9.2.1 Starting the parser
In this API, the parser is started by invoking Incremental.main. (Recall that we assume that main is the name
of the start symbol.) The generated file parser.mli contains the following declaration:

module Incremental : sig
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val main: position -> thing MenhirInterpreter.checkpoint
end

The argument is the initial position. If the lexer is based on an OCaml lexing buffer, this argument should be
lexbuf.lex_curr_p. In §9.2 and §9.3, the type position is a synonym for Lexing.position.

We emphasize that the function Incremental.main does not parse anything. It constructs a checkpoint
which serves as a starting point. The functions offer and resume, described below, are used to drive the parser.

9.2.2 Driving the parser
The sub-module MenhirInterpreter is also part of the incremental API. Its declaration, which appears in the
generated file parser.mli, is as follows:

module MenhirInterpreter : MenhirLib.IncrementalEngine.INCREMENTAL_ENGINE
with type token = token

The signature INCREMENTAL_ENGINE, defined in the module MenhirLib.IncrementalEngine, contains many
types and functions, which are described in the rest of this section (§9.2.2) and in the following sections (§9.2.3,
§9.2.4).

Please keep in mind that, from the outside, these types and functions should be referred to with an appropriate
prefix. For instance, the type checkpoint should be referred to as MenhirInterpreter.checkpoint, or
Parser.MenhirInterpreter.checkpoint, depending on which modules the user chooses to open.

type ’a env

The abstract type ’a env represents the current state of the parser. (That is, it contains the current state and
stack of the LR automaton.) Assuming that semantic values are immutable, it is a persistent data structure: it
can be stored and used multiple times, if desired. The parameter ’a is the type of the semantic value that will
eventually be produced if the parser succeeds.

type production

The abstract type production represents a production of the grammar. The “start productions” (which do
not exist in an .mly file, but are constructed by Menhir internally) are not part of this type.

type ’a checkpoint = private
| InputNeeded of ’a env
| Shifting of ’a env * ’a env * bool
| AboutToReduce of ’a env * production
| HandlingError of ’a env
| Accepted of ’a
| Rejected

The type ’a checkpoint represents an intermediate or final state of the parser. An intermediate checkpoint
is a suspension: it records the parser’s current state, and allows parsing to be resumed. The parameter ’a is the
type of the semantic value that will eventually be produced if the parser succeeds.

Accepted and Rejected are final checkpoints. Accepted carries a semantic value.
InputNeeded is an intermediate checkpoint. It means that the parser wishes to read one token before

continuing.
Shifting is an intermediate checkpoint. It means that the parser is taking a shift transition. It exposes the

state of the parser before and after the transition. The Boolean parameter tells whether the parser intends to
request a new token after this transition. (It always does, except when it is about to accept.)

AboutToReduce is an intermediate checkpoint: it means that the parser is about to perform a reduction
step. HandlingError is also an intermediate checkpoint: it means that the parser has detected an error and is
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about to handle it. (Error handling is typically performed in several steps, so the next checkpoint is likely to be
HandlingError again.) In these two cases, the parser does not need more input. The parser suspends itself at
this point only in order to give the user an opportunity to observe the parser’s transitions and possibly handle
errors in a different manner, if desired.

val offer:
’a checkpoint ->
token * position * position ->
’a checkpoint

The function offer allows the user to resume the parser after the parser has suspended itself with a
checkpoint of the form InputNeeded env. This function expects the previous checkpoint checkpoint as well
as a new token (together with the start and end positions of this token). It produces a new checkpoint, which
again can be an intermediate checkpoint or a final checkpoint. It does not raise any exception. (The exception
Error is used only in the monolithic API.)

val resume:
’a checkpoint ->
’a checkpoint

The function resume allows the user to resume the parser after the parser has suspended itself with a
checkpoint of the form AboutToReduce (env, prod) or HandlingError env. This function expects just
the previous checkpoint checkpoint. It produces a new checkpoint. It does not raise any exception.

The incremental API subsumes the monolithic API. Indeed, main can be (and is in fact) implemented by first
using Incremental.main, then calling offer and resume in a loop, until a final checkpoint is obtained.

type supplier =
unit -> token * position * position

A token supplier is a function of no arguments which delivers a new token (together with its start and end
positions) every time it is called. The function loop and its variants, described below, expect a supplier as an
argument.

val lexer_lexbuf_to_supplier:
(Lexing.lexbuf -> token) -> Lexing.lexbuf -> supplier

The function lexer_lexbuf_to_supplier, applied to a lexer and to a lexing buffer, produces a fresh
supplier.

The functions offer and resume, documented above, are sufficient to write a parser loop. One can imagine
many variations of such a loop, which is why we expose offer and resume in the first place. Nevertheless,
some variations are so common that it is worth providing them, ready for use. The following functions are
implemented on top of offer and resume.

val loop: supplier -> ’a checkpoint -> ’a

loop supplier checkpoint begins parsing from checkpoint, reading tokens from supplier. It contin-
ues parsing until it reaches a checkpoint of the form Accepted v or Rejected. In the former case, it returns v.
In the latter case, it raises the exception Error. (By the way, this is how we implement the monolithic API on
top of the incremental API.)

val loop_handle:
(’a -> ’answer) ->
(’a checkpoint -> ’answer) ->
supplier -> ’a checkpoint -> ’answer
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loop_handle succeed fail supplier checkpoint begins parsing from checkpoint, reading tokens
from supplier. It continues until it reaches a checkpoint of the form Accepted v or HandlingError _
(or Rejected, but that should not happen, as HandlingError _ will be observed first). In the former case,
it calls succeed v. In the latter case, it calls fail with this checkpoint. It cannot raise Error.

This means that Menhir’s traditional error-handling procedure (which pops the stack until a state that can
act on the error token is found) does not get a chance to run. Instead, the user can implement her own error
handling code, in the fail continuation.

val loop_handle_undo:
(’a -> ’answer) ->
(’a checkpoint -> ’a checkpoint -> ’answer) ->
supplier -> ’a checkpoint -> ’answer

loop_handle_undo is analogous to loop_handle, but passes a pair of checkpoints (instead of a single
checkpoint) to the failure continuation. The first (and oldest) checkpoint that is passed to the failure continuation
is the last InputNeeded checkpoint that was encountered before the error was detected. The second (and newest)
checkpoint is where the error was detected. (This is the same checkpoint that loop_handle would pass to
its failure continuation.) Going back to the first checkpoint can be thought of as undoing any reductions that
were performed after seeing the problematic token. (These reductions must be default reductions or spurious
reductions.) This can be useful to someone who wishes to implement an error explanation or error recovery
mechanism.

loop_handle_undo must be applied to an InputNeeded checkpoint. The initial checkpoint produced by
Incremental.main is of this form.

val shifts: ’a checkpoint -> ’a env option

shifts checkpoint assumes that checkpoint has been obtained by submitting a token to the parser. It
runs the parser from checkpoint, through an arbitrary number of reductions, until the parser either accepts this
token (i.e., shifts) or rejects it (i.e., signals an error). If the parser decides to shift, then Some env is returned,
where env is the parser’s state just before shifting. Otherwise, None is returned. This can be used to test whether
the parser is willing to accept a certain token. This function should be used with caution, though, as it causes
semantic actions to be executed. It is desirable that all semantic actions be side-effect-free, or that their side-
effects be harmless.

val acceptable: ’a checkpoint -> token -> position -> bool

acceptable checkpoint token pos requires checkpoint to be an InputNeeded checkpoint. It returns
true iff the parser is willing to shift this token. This can be used to test, after an error has been detected,
which tokens would have been accepted at this point. To do this, one would typically use loop_handle_undo
to get access to the last InputNeeded checkpoint that was encountered before the error was detected, and apply
acceptable to that checkpoint.

acceptable is implemented using shifts, so, like shifts, it causes certain semantic actions to be executed.
It is desirable that all semantic actions be side-effect-free, or that their side-effects be harmless.

9.2.3 Inspecting the parser’s state
Although the type env is opaque, a parser state can be inspected via a few accessor functions, which are
described in this section. The following types and functions are contained in the MenhirInterpreter sub-
module.

type ’a lr1state
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The abstract type ’a lr1state describes a (non-initial) state of the LR(1) automaton. If s is such a state,
then s should have at least one incoming transition, and all of its incoming transitions carry the same (terminal
or non-terminal) symbol, say A. We say that A is the incoming symbol of the state s. The index ’a is the type of
the semantic values associated with A. The role played by ’a is clarified in the definition of the type element,
which appears further on.

val number: _ lr1state -> int

The states of the LR(1) automaton are numbered (from 0 and up). The function number maps a state to its
number.

val production_index: production -> int
val find_production: int -> production

Productions are numbered. (The set of indices of all productions forms an interval, which does not necessarily
begin at 0.) The function production_index converts a production to an integer number, whereas the function
find_production carries out the reverse conversion. It is an error to apply find_production to an invalid
index.

type element =
| Element: ’a lr1state * ’a * position * position -> element

The type element describes one entry in the stack of the LR(1) automaton. In a stack element of the form
Element (s, v, startp, endp), s is a (non-initial) state and v is a semantic value. The value v is associated
with the incoming symbol A of the state s. In other words, the value v was pushed onto the stack just before the
state s was entered. Thus, for some type ’a, the state s has type ’a lr1state and the value v has type ’a. The
positions startp and endp delimit the fragment of the input text that was reduced to the symbol A.

In order to do anything useful with the value v, one must gain information about the type ’a, by inspection
of the state s. So far, the type ’a lr1state is abstract, so there is no way of inspecting s. The inspection API
(§9.3) offers further tools for this purpose.

val top: ’a env -> element option

top env returns the parser’s top stack element. The state contained in this stack element is the current state
of the automaton. If the stack is empty, None is returned. In that case, the current state of the automaton must be
an initial state.

val pop_many: int -> ’a env -> ’a env option

pop_many i env pops i elements off the automaton’s stack. This is done via i successive invocations of
pop. Thus, pop_many 1 is pop. The index i must be nonnegative. The time complexity is O(i).

val get: int -> ’a env -> element option

get i env returns the parser’s i-th stack element. The index i is 0-based: thus, get 0 is top. If i is greater
than or equal to the number of elements in the stack, None is returned. get is implemented using pop_many and
top: its time complexity is O(i).

val current_state_number: ’a env -> int

current_state_number env is the integer number of the automaton’s current state. Although this number
might conceivably be obtained via the functions top and number, using current_state_number is preferable,
because this method works even when the automaton’s stack is empty (in which case the current state is an
initial state, and top returns None). This number can be passed as an argument to a message function generated
by menhir --compile-errors.
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val equal: ’a env -> ’a env -> bool

equal env1 env2 tells whether the parser configurations env1 and env2 are equal in the sense that the
automaton’s current state is the same in env1 and env2 and the stack is physically the same in env1 and env2.
If equal env1 env2 is true, then the sequence of the stack elements, as observed via pop and top, must be
the same in env1 and env2. Also, if equal env1 env2 holds, then the checkpoints input_needed env1 and
input_needed env2 must be equivalent. (The function input_needed is documented in §9.2.4.) The function
equal has time complexity O(1).

val positions: ’a env -> position * position

The function positions returns the start and end positions of the current lookahead token. If invoked in an
initial state, this function returns a pair of twice the initial position that was passed as an argument to main.

val env_has_default_reduction: ’a env -> bool
val state_has_default_reduction: _ lr1state -> bool

When applied to an environment env taken from a checkpoint of the form AboutToReduce (env, prod),
the function env_has_default_reduction tells whether the reduction that is about to take place is a default
reduction.

state_has_default_reduction s tells whether the state s has a default reduction. This includes the case
where s is an accepting state.

9.2.4 Updating the parser’s state
The functions presented in the previous section (§9.2.3) allow inspecting parser states of type ’a checkpoint
and ’a env. However, so far, there are no functions for manufacturing new parser states, except offer and
resume, which create new checkpoints by feeding tokens, one by one, to the parser.

In this section, a small number of functions are provided for manufacturing new parser states of type ’a env
and ’a checkpoint. These functions allow going far back into the past and jumping ahead into the future, so to
speak. In other words, they allow driving the parser in other ways than by feeding tokens into it. The functions
pop, force_reduction and feed (part of the inspection API; see §9.3) construct values of type ’a env. The
function input_needed constructs values of type ’a checkpoint and thereby allows resuming parsing in
normal mode (via offer). Together, these functions can be used to implement error handling and error recovery
strategies.

val pop: ’a env -> ’a env option

pop env returns a new environment, where the parser’s top stack cell has been popped off. (If the stack is
empty, None is returned.) This amounts to pretending that the (terminal or nonterminal) symbol that corresponds
to this stack cell has not been read.

val force_reduction: production -> ’a env -> ’a env

force_reduction prod env can be called only if in the state env the parser is capable of reducing the
production prod. If this condition is satisfied, then this production is reduced, which means that its semantic
action is executed (this can have side effects!) and the automaton makes a goto (nonterminal) transition. If this
condition is not satisfied, an Invalid_argument exception is raised.

val input_needed: ’a env -> ’a checkpoint

input_needed env returns InputNeeded env. Thus, out of a parser state that might have been obtained
via a series of calls to the functions pop, force_reduction, feed, and so on, it produces a checkpoint, which
can be used to resume normal parsing, by supplying this checkpoint as an argument to offer.
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This function should be used with some care. It could “mess up the lookahead” in the sense that it allows
parsing to resume in an arbitrary state s with an arbitrary lookahead symbol t, even though Menhir’s reachability
analysis (which is carried out via the --list-errors switch) might well think that it is impossible to reach this
particular configuration. If one is using Menhir’s new error reporting facility (§11), this could cause the parser
to reach an error state for which no error message has been prepared.

9.3 Inspection API
If --inspection is set, Menhir offers an inspection API in addition to the monolithic and incremental
APIs. (The reason why this is not done by default is that this requires more tables to be generated, thus
making the generated parser larger.) Like the incremental API, the inspection API is found in the sub-module
MenhirInterpreter. It offers the following types and functions.

The type ’a terminal is a generalized algebraic data type (GADT). A value of type ’a terminal repre-
sents a terminal symbol (without a semantic value). The index ’a is the type of the semantic values associated
with this symbol. For instance, if the grammar contains the declarations %token A and %token<int> B, then
the generated module MenhirInterpreter contains the following definition:

type _ terminal =
| T_A : unit terminal
| T_B : int terminal

The data constructors are named after the terminal symbols, prefixed with “T_”.
The type ’a nonterminal is also a GADT. A value of type ’a nonterminal represents a nonterminal

symbol (without a semantic value). The index ’a is the type of the semantic values associated with this symbol.
For instance, if main is the only nonterminal symbol, then the generated module MenhirInterpreter contains
the following definition:

type _ nonterminal =
| N_main : thing nonterminal

The data constructors are named after the nonterminal symbols, prefixed with “N_”.
The type ’a symbol is the disjoint union of the types ’a terminal and ’a nonterminal. In other words,

a value of type ’a symbol represents a terminal or nonterminal symbol (without a semantic value). This type
is (always) defined as follows:

type ’a symbol =
| T : ’a terminal -> ’a symbol
| N : ’a nonterminal -> ’a symbol

The type xsymbol is an existentially quantified version of the type ’a symbol. It is useful in situations where
the index ’a is not statically known. It is (always) defined as follows:

type xsymbol =
| X : ’a symbol -> xsymbol

The type item describes an LR(0) item, that is, a pair of a production prod and an index i into the right-hand
side of this production. If the length of the right-hand side is n, then i is comprised between 0 and n, inclusive.

type item =
production * int

The following functions implement total orderings on the types _ terminal, _ nonterminal, xsymbol,
production, and item.

val compare_terminals: _ terminal -> _ terminal -> int
val compare_nonterminals: _ nonterminal -> _ nonterminal -> int
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val compare_symbols: xsymbol -> xsymbol -> int
val compare_productions: production -> production -> int
val compare_items: item -> item -> int

The function incoming_symbol maps a (non-initial) LR(1) state s to its incoming symbol, that is, the symbol
that the parser must recognize before it enters the state s.

val incoming_symbol: ’a lr1state -> ’a symbol

This function can be used to gain access to the semantic value v in a stack element Element (s, v, _, _).
Indeed, by case analysis on the symbol incoming_symbol s, one gains information about the type ’a, hence
one obtains the ability to do something useful with the value v.

The function items maps a (non-initial) LR(1) state s to its LR(0) core, that is, to the underlying set of LR(0)
items. This set is represented as a list, whose elements appear in an arbitrary order. This set is not closed under
ε-transitions.

val items: _ lr1state -> item list

The functions lhs and rhs map a production prod to its left-hand side and right-hand side, respectively. The
left-hand side is always a nonterminal symbol, hence always of the form N _. The right-hand side is a (possibly
empty) sequence of (terminal or nonterminal) symbols.

val lhs: production -> xsymbol
val rhs: production -> xsymbol list

The function nullable, applied to a non-terminal symbol, tells whether this symbol is nullable. A nonter-
minal symbol is nullable if and only if it produces the empty word ε.

val nullable: _ nonterminal -> bool

The function call first nt t tells whether the FIRST set of the nonterminal symbol nt contains the terminal
symbol t. That is, it returns true if and only if nt produces a word that begins with t. The function xfirst is
identical to first, except it expects a first argument of type xsymbol instead of _ terminal.

val first: _ nonterminal -> _ terminal -> bool
val xfirst: xsymbol -> _ terminal -> bool

The function foreach_terminal enumerates the terminal symbols, including the special symbol error. The
function foreach_terminal_but_error enumerates the terminal symbols, excluding error.

val foreach_terminal: (xsymbol -> ’a -> ’a) -> ’a -> ’a
val foreach_terminal_but_error: (xsymbol -> ’a -> ’a) -> ’a -> ’a

feed symbol startp semv endp env causes the parser to consume the (terminal or nonterminal) symbol
symbol, accompanied with the semantic value semv and with the start and end positions startp and endp.
Thus, the automaton makes a transition, and reaches a new state. The stack grows by one cell. This operation
is permitted only if the current state (as determined by env) has an outgoing transition labeled with symbol.
Otherwise, an Invalid_argument exception is raised.

val feed: ’a symbol -> position -> ’a -> position -> ’b env -> ’b env

10. Error handling: the traditional way
Menhir’s traditional error handling mechanism is considered deprecated: although it is still supported for the
time being, it might be removed in the future. We recommend setting up an error handling mechanism using the
new tools offered by Menhir (§11).

Error handling Menhir’s error traditional handling mechanism is inspired by that of yacc and ocamlyacc,
but is not identical. A special error token is made available for use within productions. The LR automaton is
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constructed exactly as if error was a regular terminal symbol. However, error is never produced by the lexical
analyzer. Instead, when an error is detected, the current lookahead token is discarded and replaced with the
error token, which becomes the current lookahead token. At this point, the parser enters error handling mode.

In error handling mode, automaton states are popped off the automaton’s stack until a state that can act on
error is found. This includes both shift and reduce actions. (yacc and ocamlyacc do not trigger reduce actions
on error. It is somewhat unclear why this is so.)

When a state that can reduce on error is found, reduction is performed. Since the lookahead token is still
error, the automaton remains in error handling mode.

When a state that can shift on error is found, the error token is shifted. At this point, the parser returns to
normal mode.

When no state that can act on error is found on the automaton’s stack, the parser stops and raises the exception
Error. This exception carries no information. The position of the error can be obtained by reading the lexical
analyzer’s environment record.

Error recovery ocamlyacc offers an error recovery mode, which is entered immediately after an error token
was successfully shifted. In this mode, tokens are repeatedly taken off the input stream and discarded until an
acceptable token is found. This feature is no longer offered by Menhir.

Error-related keywords The following keyword is made available to semantic actions.
When the $syntaxerror keyword is evaluated, evaluation of the semantic action is aborted, so that the

current reduction is abandoned; the current lookahead token is discarded and replaced with the error token; and
error handling mode is entered. Note that there is no mechanism for inserting an error token in front of the
current lookahead token, even though this might also be desirable. It is unclear whether this keyword is useful;
it might be suppressed in the future.

11. Error handling: the new way
Menhir’s incremental API (§9.2) allows taking control when an error is detected. Indeed, as soon as an invalid
token is detected, the parser produces a checkpoint of the form HandlingError _. At this point, if one decides
to let the parser proceed, by just calling resume, then Menhir enters its traditional error handling mode (§10).
Instead, however, one can decide to take control and perform error handling or error recovery in any way one
pleases. One can, for instance, build and display a diagnostic message, based on the automaton’s current stack
and/or state. Or, one could modify the input stream, by inserting or deleting tokens, so as to suppress the error,
and resume normal parsing. In principle, the possibilities are endless.

An apparently simple-minded approach to error reporting, proposed by Jeffery [10] and further explored by
Pottier [20], consists in selecting a diagnostic message (or a template for a diagnostic message) based purely on
the current state of the automaton.

In this approach, one determines, ahead of time, which are the “error states” (that is, the states in which an
error can be detected), and one prepares, for each error state, a diagnostic message. Because state numbers are
fragile (they change when the grammar evolves), an error state is identified not by its number, but by an input
sentence that leads to it: more precisely, by an input sentence which causes an error to be detected in this state.
Thus, one maintains a set of pairs of an erroneous input sentence and a diagnostic message.

Menhir defines a file format, the .messages file format, for representing this information (§11.1), and offers a
set of tools for creating, maintaining, and exploiting .messages files (§11.2). Once one understands these tools,
there remains to write a collection of diagnostic messages, a more subtle task than one might think (§11.3), and
to glue everything together (§11.4).

In this approach to error handling, as in any other approach, one must understand exactly when (that is,
in which states) errors are detected. This in turn requires understanding how the automaton is constructed.
Menhir’s construction technique is not Knuth’s canonical LR(1) technique [15], which is usually too expensive
to be practical. Instead, Menhir merges states [19] and introduces so-called default reductions. These techniques
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grammar: TYPE UID
grammar: TYPE OCAMLTYPE UID PREC

# A (handwritten) comment.

Ill-formed declaration.
Examples of well-formed declarations:

%type <Syntax.expression> expression
%type <int> date time

Figure 16. An entry in a .messages file

defer error detection by allowing extra reductions to take place before an error is detected. The impact of these
alterations must be taken into account when writing diagnostic messages (§11.3).

In this approach to error handling, the special error token is not used. It should not appear in the grammar.
Similarly, the $syntaxerror keyword should not be used.

11.1 The .messages file format
A .messages file is a text file. Comment lines, which begin with a # character, are ignored everywhere. As is
evident in the following description, blank lines are significant: they are used as separators between entries and
within an entry.

A .messages file is composed of a list of entries. Two entries are separated by one or more blank lines. Each
entry consists of one or more input sentences, followed with one or more blank lines, followed with a message.
The syntax of an input sentence is described in §8.1. A message is arbitrary text, but cannot contain a blank line.
We stress that there cannot be a blank line between two sentences (if there is one, Menhir becomes confused
and may complain about some word not being “a known non-terminal symbol”).

As an example, Figure 16 shows a valid entry, taken from Menhir’s own .messages file. This entry contains
two input sentences, which lead to errors in two distinct states. A single message is associated with these two
error states.

Several commands, described next (§11.2), produce .messages files where each input sentence is followed
with an auto-generated comment, marked with ##. This special comment indicates in which state the error is
detected, and is supposed to help the reader understand what it means to be in this state: What has been read so
far? What is expected next?

As an example, the previous entry, decorated with auto-generated comments, is shown in Figure 17. (We have
manually wrapped the lines that did not fit in this document.)

An auto-generated comment begins with the number of the error state that is reached via this input sentence.
Then, the auto-generated comment shows the LR(1) items that compose this state, in the same format as in

an .automaton file. these items offer a description of the past (that is, what has been read so far) and the future
(that is, which terminal symbols are allowed next).

Finally, the auto-generated comment shows what is known about the stack when the automaton is in this
state. (This can be deduced from the LR(1) items, but is more readable if shown separately.)

In a canonical LR(1) automaton, the LR(1) items offer an exact description of the past and future. However,
in a noncanonical automaton, which is by default what Menhir produces, the situation is more subtle. The
lookahead sets can be over-approximated, so the automaton can perform one or more “spurious reductions”
before an error is detected. As a result, the LR(1) items in the error state offer a description of the future
that may be both incorrect (that is, a terminal symbol that appears in a lookahead set is not necessarily a
valid continuation) and incomplete (that is, a terminal symbol that does not appear in any lookahead set may
nevertheless be a valid continuation). More details appear further on (§11.3).
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grammar: TYPE UID
##
## Ends in an error in state: 1.
##
## declaration -> TYPE . OCAMLTYPE separated_nonempty_list(option(COMMA),
## strict_actual) [ TYPE TOKEN START RIGHT PUBLIC PERCENTPERCENT PARAMETER
## ON_ERROR_REDUCE NONASSOC LEFT INLINE HEADER EOF COLON ]
##
## The known suffix of the stack is as follows:
## TYPE
##
grammar: TYPE OCAMLTYPE UID PREC
##
## Ends in an error in state: 5.
##
## strict_actual -> symbol . loption(delimited(LPAREN,separated_nonempty_list
## (COMMA,strict_actual),RPAREN)) [ UID TYPE TOKEN START STAR RIGHT QUESTION
## PUBLIC PLUS PERCENTPERCENT PARAMETER ON_ERROR_REDUCE NONASSOC LID LEFT
## INLINE HEADER EOF COMMA COLON ]
##
## The known suffix of the stack is as follows:
## symbol
##

# A (handwritten) comment.

Ill-formed declaration.
Examples of well-formed declarations:

%type <Syntax.expression> expression
%type <int> date time

Figure 17. An entry in a .messages file, decorated with auto-generated comments

In order to attract the user’s attention to this issue, if an input sentence causes one or more spurious reductions,
then the auto-generated comment contains a warning about this fact. This mechanism is not completely
foolproof, though, as it may be the case that one particular sentence does not cause any spurious reductions
(hence, no warning appears), yet leads to an error state that can be reached via other sentences that do involve
spurious reductions.

11.2 Maintaining .messages files
Ideally, the set of input sentences in a .messages file should be correct (that is, every sentence causes an error
on its last token), irredundant (that is, no two sentences lead to the same error state), and complete (that is, every
error state is reached by some sentence).

Correctness and irredundancy are checked by the command --compile-errors filename, where filename is
the name of a .messages file. This command fails if a sentence does not cause an error at all, or causes an error
too early. It also fails if two sentences lead to the same error state. If the file is correct and irredundant, then
(as its name suggests) this command compiles the .messages file down to an OCaml function, whose code is
printed on the standard output channel. This function, named message, has type int -> string, and maps a
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state number to a message. It raises the exception Not_found if its argument is not the number of a state for
which a message has been defined.

Completeness is checked via the commands --list-errors and --compare-errors. The former produces,
from scratch, a complete set of input sentences, that is, a set of input sentences that reaches all error states. The
latter compares two sets of sentences (more precisely, the two underlying sets of error states) for inclusion.

The command --list-errors first computes all possible ways of causing an error. From this information,
it deduces a list of all error states, that is, all states where an error can be detected. For each of these states,
it computes a (minimal) input sentence that causes an error in this state. Finally, it prints these sentences, in
the .messages file format, on the standard output channel. Each sentence is followed with an auto-generated
comment and with a dummy diagnostic message. The user should be warned that this algorithm may require
large amounts of time (typically in the tens of seconds, possibly more) and memory (typically in the gigabytes,
possibly more). It requires a 64-bit machine. (On a 32-bit machine, it works, but quickly hits a built-in size
limit.) At the verbosity level --log-automaton 2, it displays some progress information and internal statistics
on the standard error channel.

The command --compare-errors filename1 --compare-errors filename2 compares the .messages files
filename1 and filename2. Each file is read and internally translated to a mapping of states to messages. Menhir
then checks that the left-hand mapping is a subset of the right-hand mapping. That is, if a state s is reached by
some sentence in filename1, then it should also be reached by some sentence in filename2. Furthermore, if the
message associated with s in filename1 is not a dummy message, then the same message should be associated
with s in filename2.

To check that the sentences in filename2 cover all error states, it suffices to (1) use --list-errors to
produce a complete set of sentences, which one stores in filename1, then (2) use --compare-errors to compare
filename1 and filename2.

The command --update-errors filename is used to update the auto-generated comments in the .messages
file filename. It is typically used after a change in the grammar (or in the command line options that affect the
construction of the automaton). A new .messages file is produced on the standard output channel. It is identical
to filename, except the auto-generated comments, identified by ##, have been removed and re-generated.

The command --echo-errors filename is used to filter out all comments, blank lines, and messages from
the .messages file filename. The input sentences, and nothing else, are echoed on the standard output channel.
As an example application, one could then translate the sentences to concrete syntax and create a collection of
source files that trigger every possible syntax error.

The command --interpret-error is analogous to --interpret. It causes Menhir to act as an interpreter.
Menhir reads sentences off the standard input channel, parses them, and displays the outcome. This switch can
be usefully combined with --trace. The main difference between --interpret and --interpret-error is
that, when the latter command is used, Menhir expects the input sentence to cause an error on its last token, and
displays information about the state in which the error is detected, in the form of a .messages file entry. This
can be used to quickly find out exactly what error is caused by one particular input sentence.

11.3 Writing accurate diagnostic messages
One might think that writing a diagnostic message for each error state is a straightforward (if lengthy) task. In
reality, it is not so simple.

A state, not a sentence The first thing to keep in mind is that a diagnostic message is associated with a state s,
as opposed to a sentence. An entry in a .messages file contains a sentence w that leads to an error in state s.
This sentence is just one way of causing an error in state s; there may exist many other sentences that also cause
an error in this state. The diagnostic message should not be specific of the sentence w: it should make sense
regardless of how the state s is reached.
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%token ID ARROW LPAREN RPAREN COLON SEMICOLON
%start<unit> program
%%
typ0: ID | LPAREN typ1 RPAREN {}
typ1: typ0 | typ0 ARROW typ1 {}
declaration: ID COLON typ1 {}
program:
| LPAREN declaration RPAREN
| declaration SEMICOLON {}

Figure 18. A grammar where one error state is difficult to explain

program: ID COLON ID LPAREN
##
## Ends in an error in state: 8.
##
## typ1 -> typ0 . [ SEMICOLON RPAREN ]
## typ1 -> typ0 . ARROW typ1 [ SEMICOLON RPAREN ]
##
## The known suffix of the stack is as follows:
## typ0
##

Figure 19. A problematic error state in the grammar of Figure 18, due to over-approximation

As a rule of thumb, when writing a diagnostic message, one should (as much as possible) ignore the example
sentence w altogether, and concentrate on the description of the state s, which appears as part of the auto-
generated comment.

The LR(1) items that compose the state s offer a description of the past (that is, what has been read so far)
and the future (that is, which terminal symbols are allowed next). A diagnostic message should be designed
based on this description.

The problem of over-approximated lookahead sets As pointed out earlier (§11.1), in a noncanonical automa-
ton, the lookahead sets in the LR(1) items can be both over- and under-approximated. One must be aware of this
phenomenon, otherwise one runs the risk of writing a diagnostic message that proposes too many or too few
continuations.

As an example, let us consider the grammar in Figure 18. According to this grammar, a “program” is either
a declaration between parentheses or a declaration followed with a semicolon. A “declaration” is an identifier,
followed with a colon, followed with a type. A “type” is an identifier, a type between parentheses, or a function
type in the style of OCaml.

The (noncanonical) automaton produced by Menhir for this grammar has 17 states. Using --list-errors,
we find that an error can be detected in 10 of these 17 states. By manual inspection of the auto-generated
comments, we find that for 9 out of these 10 states, writing an accurate diagnostic message is easy. However,
one problematic state remains, namely state 8, shown in Figure 19.

In this state, a (level-0) type has just been read. One valid continuation, which corresponds to the second
LR(1) item in Figure 19, is to continue this type: the terminal symbol ARROW, followed with a (level-1) type, is a
valid continuation. Now, the question is, what other valid continuations are there? By examining the first LR(1)
item in Figure 19, it may look as if both SEMICOLON and RPAREN are valid continuations. However, this cannot
be the case. A moment’s thought reveals that either we have seen an opening parenthesis LPAREN at the very
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%token ID ARROW LPAREN RPAREN COLON SEMICOLON
%start<unit> program
%%
typ0: ID | LPAREN typ1(RPAREN) RPAREN {}
typ1(phantom): typ0 | typ0 ARROW typ1(phantom) {}
declaration(phantom): ID COLON typ1(phantom) {}
program:
| LPAREN declaration(RPAREN) RPAREN
| declaration(SEMICOLON) SEMICOLON {}

Figure 20. Splitting the problematic state of Figure 19 via selective duplication

%token ID ARROW LPAREN RPAREN COLON SEMICOLON
%start<unit> program
%on_error_reduce typ1
%%
typ0: ID | LPAREN typ1 RPAREN {}
typ1: typ0 | typ0 ARROW typ1 {}
declaration: ID COLON typ1 {}
program:
| LPAREN declaration RPAREN
| declaration SEMICOLON {}

Figure 21. Avoiding the problematic state of Figure 19 via reductions on error

beginning of the program, in which case we definitely expect a closing parenthesis RPAREN; or we have not seen
one, in which case we definitely expect a semicolon SEMICOLON. It is never the case that both SEMICOLON and
RPAREN are valid continuations!

In fact, the lookahead set in the first LR(1) item in Figure 19 is over-approximated. State 8 in the noncanonical
automaton results from merging two states in the canonical automaton.

In such a situation, one cannot write an accurate diagnostic message. Knowing that the automaton is in state 8
does not give us a precise view of the valid continuations. Some valuable information (that is, whether we have
seen an opening parenthesis LPAREN at the very beginning of the program) is buried in the automaton’s stack.

How can one work around this problem? Let us suggest three options.

Blind duplication of states One option would be to build a canonical automaton by using the --canonical
switch. In this example, one would obtain a 27-state automaton, where the problem has disappeared. However,
this option is rarely viable, as it duplicates many states without good reason.

Selective duplication of states A second option is to manually cause just enough duplication to remove the
problematic over-approximation. In our example, we wish to distinguish two kinds of types and declarations,
namely those that must be followed with a closing parenthesis, and those that must be followed with a semicolon.
We create such a distinction by parameterizing typ1 and declaration with a phantom parameter. The modified
grammar is shown in Figure 20. The phantom parameter does not affect the language that is accepted: for
instance, the nonterminal symbols declaration(SEMICOLON) and declaration(RPAREN) generate the same
language as declaration in the grammar of Figure 18. Yet, by giving distinct names to these two symbols, we
force the construction of an automaton where more states are distinguished. In this example, Menhir produces
a 23-state automaton. Using --list-errors, we find that an error can be detected in 11 of these 23 states,
and by manual inspection of the auto-generated comments, we find that for each of these 11 states, writing an
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program: ID COLON ID LPAREN
##
## Ends in an error in state: 15.
##
## program -> declaration . SEMICOLON [ # ]
##
## The known suffix of the stack is as follows:
## declaration
##
## WARNING: This example involves spurious reductions.
## This implies that, although the LR(1) items shown above provide an
## accurate view of the past (what has been recognized so far), they
## may provide an INCOMPLETE view of the future (what was expected next).
## In state 8, spurious reduction of production typ1 -> typ0
## In state 11, spurious reduction of production declaration -> ID COLON typ1
##

Figure 22. A problematic error state in the grammar of Figure 21, due to under-approximation

accurate diagnostic message is easy. In summary, we have selectively duplicated just enough states so as to split
the problematic error state into two non-problematic error states.

Reductions on error A third and last option is to introduce an %on_error_reduce declaration (§4.1.8) so as
to prevent the detection of an error in the problematic state 8. We see in Figure 19 that, in state 8, the production
typ1 → typ0 is ready to be reduced. If we could force this reduction to take place, then the automaton would
move to some other state where it would be clear which of SEMICOLON and RPAREN is expected. We achieve
this by marking typ1 as “reducible on error”. The modified grammar is shown in Figure 21. For this grammar,
Menhir produces a 17-state automaton. (This is the exact same automaton as for the grammar of Figure 18,
except 2 of the 17 states have received extra reduction actions.) Using --list-errors, we find that an error
can be detected in 9 of these 17 states. The problematic state, namely state 8, is no longer an error state! The
problem has vanished.

The problem of under-approximated lookahead sets The third option seems by far the simplest of all, and is
recommended in many situations. However, it comes with a caveat. There may now exist states whose lookahead
sets are under-approximated, in a certain sense. Because of this, there is a danger of writing an incomplete
diagnostic message, one that does not list all valid continuations.

To see this, let us look again at the sentence ID COLON ID LPAREN. In the grammar and automaton of
Figure 18, this sentence takes us to the problematic state 8, shown in Figure 19. In the grammar and automaton
of Figure 21, because more reduction actions are carried out before the error is detected, this sentence takes us
to state 15, shown in Figure 22.

When writing a diagnostic message for state 15, one might be tempted to write: “Up to this point, a declaration
has been recognized. At this point, a semicolon is expected”. Indeed, by examining the sole LR(1) item in
state 15, it looks as if SEMICOLON is the only permitted continuation. However, this is not the case. Another valid
continuation is ARROW: indeed, the sentence ID COLON ID ARROW ID SEMICOLON forms a valid program. In
fact, if the first token following ID COLON ID is ARROW, then in state 8 this token is shifted, so the two reductions
that take us from state 8 through state 11 to state 15 never take place. This is why, even though ARROW does not
appear in state 15 as a valid continuation, it nevertheless is a valid continuation of ID COLON ID. The warning
produced by Menhir, shown in Figure 22, is supposed to attract attention to this issue.

Another way to explain this issue is to point out that, by declaring %on_error_reduce typ1, we make
a choice. When the parser reads a type and finds an invalid token, it decides that this type is finished, even
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though, in reality, this type could be continued with ARROW . . . . This in turn causes the parser to perform
another reduction and consider the current declaration finished, even though, in reality, this declaration could be
continued with ARROW . . . .

In summary, when writing a diagnostic message for state 15, one should take into account the fact that
this state can be reached via spurious reductions and (therefore) SEMICOLON may not be the only permitted
continuation. One way of doing this, without explicitly listing all permitted continuations, is to write: “Up to
this point, a declaration has been recognized. If this declaration is complete, then at this point, a semicolon is
expected”.

11.4 A working example
The CompCert verified compiler offers a real-world example of this approach to error handling. The “pre-
parser” is where syntax errors are detected: see cparser/pre_parser.mly. A database of erroneous input
sentences and (templates for) diagnostic messages is stored in cparser/handcrafted.messages. It is com-
piled, using --compile-errors, to an OCaml file named cparser/pre_parser_messages.ml. The function
Pre_parser_messages.message, which maps a state number to (a template for) a diagnostic message, is
called from cparser/ErrorReports.ml, where we construct and display a full-fledged diagnostic message.

In CompCert, we allow a template for a diagnostic message to contain the special form $i, where i is
an integer constant, understood as an index into the parser’s stack. The code in cparser/ErrorReports.ml
automatically replaces this special form with the fragment of the source text that corresponds to this stack entry.
This mechanism is not built into Menhir; it is implemented in CompCert using Menhir’s incremental API.

12. Coq back-end
Menhir is able to generate a parser that whose correctness can be formally verified using the Coq proof
assistant [13]. This feature is used to construct the parser of the CompCert verified compiler [17].

Setting the --coq switch on the command line enables the Coq back-end. When this switch is set, Menhir
expects an input file whose name ends in .vy and generates a Coq file whose name ends in .v.

Like a .mly file, a .vy file is a grammar specification, with embedded semantic actions. The only difference
is that the semantic actions in a .vy file are expressed in Coq instead of OCaml. A .vy file otherwise uses the
same syntax as a .mly file. CompCert’s cparser/Parser.vy serves as an example.

Several restrictions are imposed when Menhir is used in --coq mode:

• The error handling mechanism (§10) is absent. The $syntaxerror keyword and the error token are not
supported.
• Location information is not propagated. The $start* and $end* keywords (Figure 14) are not supported.
• %parameter (§4.1.2) is not supported.
• %inline (§5.3) is not supported.
• The standard library (§5.4) is not supported, of course, because its semantic actions are expressed in OCaml.

If desired, the user can define an analogous library, whose semantic actions are expressed in Coq.
• Because Coq’s type inference algorithm is rather unpredictable, the Coq type of every nonterminal symbol

must be provided via a %type or %start declaration (§4.1.5, §4.1.6).
• Unless the proof of completeness has been deactivated using --coq-no-complete, the grammar must not

have a conflict (not even a benign one, in the sense of §6.1). That is, the grammar must be LR(1). Conflict
resolution via priority and associativity declarations (§4.1.4) is not supported. The reason is that there is no
simple formal specification of how conflict resolution should work.

The generated file contains several modules:

• The module Gram defines the terminal and non-terminal symbols, the grammar, and the semantic actions.
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• The module Aut contains the automaton generated by Menhir, together with a certificate that is checked by
Coq while establishing the soundness and completeness of the parser.

The type terminal of the terminal symbols is an inductive type, with one constructor for each terminal
symbol. A terminal symbol named Foo in the .vy file is named Foo’t in Coq. A terminal symbol per se does
not carry a the semantic value.

We also define the type token of tokens, that is, dependent pairs of a terminal symbol and a semantic value
of an appropriate type for this symbol. We model the lexer as an object of type Streams.Stream token, that
is, an infinite stream of tokens.

The type nonterminal of the non-terminal symbols is an inductive type, with one constructor for each
non-terminal symbol. A non-terminal symbol named Bar in the .vy file is named Bar’nt in Coq.

The proof of termination of an LR(1) parser in the case of invalid input seems far from obvious. We did
not find such a proof in the literature. In an application such as CompCert [17], this question is not considered
crucial. For this reason, we did not formally establish the termination of the parser. Instead, we use the “fuel”
technique. The parser takes an additional parameter of type nat that indicates the maximum number of steps
the parser is allowed to perform. In practice, after extracting the code to OCaml, one can use the standard trick
of passing an infinite amount of fuel, defined in OCaml by let rec inf = S inf.

Parsing can have three different outcomes, represented by the type parse_result. (This definition is
implicitly parameterized over the initial state init. We omit the details here.)

Inductive parse_result :=
| Fail_pr: parse_result
| Timeout_pr: parse_result
| Parsed_pr:

symbol_semantic_type (NT (start_nt init)) ->
Stream token ->
parse_result.

The outcome Fail_pr means that parsing has failed because of a syntax error. (If the completeness of
the parser with respect to the grammar has been proved, this implies that the input is invalid). The outcome
Timeout_pr means that the fuel has been exhausted. Of course, this cannot happen if the parser was given an
infinite amount of fuel, as suggested above. The outcome Parsed_pr means that the parser has succeeded in
parsing a prefix of the input stream. It carries the semantic value that has been constructed for this prefix, as
well as the remainder of the input stream.

For each entry point entry of the grammar, Menhir generates a parsing function entry, whose type is
nat -> Stream token -> parse_result.

Two theorems are provided, named entry_point_correct and entry_point_complete. The correctness
theorem states that, if a word (a prefix of the input stream) is accepted, then this word is valid (with respect
to the grammar) and the semantic value that is constructed by the parser is valid as well (with respect to the
grammar). The completeness theorem states that if a word (a prefix of the input stream) is valid (with respect to
the grammar), then (given sufficient fuel) it is accepted by the parser.

These results imply that the grammar is unambiguous: for every input, there is at most one valid interpretation.
This is proved by another generated theorem, named Parser.unambiguous.

The parsers produced by Menhir’s Coq back-end must be linked with a Coq library. This library can be
installed via the command opam install coq-menhirlib.2 The Coq sources of this library can be found at
https://gitlab.inria.fr/fpottier/coq-menhirlib.

The CompCert verified compiler [17, 16] can be used as an example if one wishes to use Menhir to generate
a formally verified parser as part of some other project. See in particular the directory cparser.
2 This assumes that you have installed opam, the OCaml package manager, and that you have run the command opam repo add
coq-released https://coq.inria.fr/opam/released.
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13. Building grammarware on top of Menhir
It is possible to build a variety of grammar-processing tools, also known as “grammarware” [14], on top of
Menhir’s front-end. Indeed, Menhir offers a facility for dumping a .cmly file, which contains a (binary-form)
representation of the grammar and automaton, as well as a library, MenhirSdk, for (programmatically) reading
and exploiting a .cmly file. These facilities are described in §13.1. Furthermore, Menhir allows decorating a
grammar with “attributes”, which are ignored by Menhir’s back-ends, yet are written to the .cmly file, thus can
be exploited by other tools, via MenhirSdk. Attributes are described in §13.2.

13.1 Menhir’s SDK
The command line option --cmly causes Menhir to produce a .cmly file in addition to its normal operation.
This file contains a (binary-form) representation of the grammar and automaton. This is the grammar that is
obtained after the following steps have been carried out:

• joining multiple .mly files, if necessary;
• eliminating anonymous rules;
• expanding away parameterized nonterminal symbols;
• removing unreachable nonterminal symbols;
• performing OCaml type inference, if the --infer switch is used;
• inlining away nonterminal symbols that are decorated with %inline.

The library MenhirSdk offers an API for reading a .cmly file. The functor MenhirSdk.Cmly_read.Read
reads such a file and produces a module whose signature is MenhirSdk.Cmly_api.GRAMMAR. This API is not
explained in this document; for details, the reader is expected to follow the above links.

13.2 Attributes
Attributes are decorations that can be placed in .mly files. They are ignored by Menhir’s back-ends, but are
written to .cmly files, thus can be exploited by other tools, via MenhirSdk.

An attribute consists of a name and a payload. An attribute name is an OCaml identifier, such as cost, or a
list of OCaml identifiers, separated with dots, such as my.name. An attribute payload is an OCaml expression
of arbitrary type, such as 1 or "&&" or print_int. Following the syntax of OCaml’s attributes, an attribute’s
name and payload are separated with one or more spaces, and are delimited by [@ and ]. Thus, [@cost 1] and
[@printer print_int] are examples of attributes.

An attribute can be attached at one of four levels:

1. An attribute can be attached with the grammar. Such an attribute must be preceded with a % sign and must
appear in the declarations section (§4.1). For example, the following is a valid declaration:

%[@trace true]

2. An attribute can be attached with a terminal symbol. Such an attribute must follow the declaration of this
symbol. For example, the following is a valid declaration of the terminal symbol INT:

%token<int> INT [@cost 0] [@printer print_int]

3. An attribute can be attached with a nonterminal symbol. Such an attribute must appear inside the rule
that defines this symbol, immediately after the name of this symbol. For instance, the following is a valid
definition of the nonterminal symbol expr:

expr [@default EConst 0]:
i = INT { EConst i }

| e1 = expr PLUS e2 = expr { EAdd (e1, e2) }

An attribute can be attached with a parameterized nonterminal symbol:
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option [@default None] (X):
{ None }

| x = X { Some x }

An attribute cannot be attached with a nonterminal symbol that is decorated with the %inline keyword.
4. An attribute can be attached with a producer (§4.2.3), that is, with an occurrence of a terminal or nonterminal

symbol in the right-hand side of a production. Such an attribute must appear immediately after the producer.
For instance, in the following rule, an attribute is attached with the producer expr*:

exprs:
LPAREN es = expr* [@list true] RPAREN { es }

As a convenience, it is possible to attach many attributes with many (terminal and nonterminal) symbols in
one go, via an %attribute declaration, which must be placed in the declarations section (§4.1). For instance,
the following declaration attaches both of the attributes [@cost 0] and [@precious false] with each of the
symbols INT and id:

%attribute INT id [@cost 0] [@precious false]

An %attribute declaration can be considered syntactic sugar: it is desugared away in terms of the four forms
of attributes presented earlier. (The command line switch --only-preprocess can be used to see how it is
desugared.)

If an attribute is attached with a parameterized nonterminal symbol, then, when this symbol is expanded away,
the attribute is transmitted to every instance. For instance, in an earlier example, the attribute [@default None]
was attached with the parameterized symbol option. Then, every instance of option, such as option(expr),
option(COMMA), and so on, inherits this attribute. To attach an attribute with one specific instance only, one
can use an %attribute declaration. For instance, the declaration %attribute option(expr) [@cost 10]
attaches an attribute with the nonterminal symbol option(expr), but not with the symbol option(COMMA).

14. Interaction with build systems
This section explains some details of the compilation workflow, including OCaml type inference and its
repercussions on dependency analysis (§14.1) and compilation flags (§14.2). This material should be of interest
only to authors of build systems who wish to build support for Menhir into their system. Ordinary users should
skip this section and use a build system that knows about Menhir, such as ocamlbuild or dune.

14.1 OCaml type inference and dependency analysis
In an ideal world, the semantic actions in a .mly file should be well-typed according to the OCaml type
discipline, and their types should be known to Menhir, which may need this knowledge. (When --inspection
is set, Menhir needs to know the OCaml type of every nonterminal symbol.) To address this problem, three
approaches exist:

• Ignore the problem and let Menhir run without OCaml type information (§14.1.1).
• Let Menhir obtain OCaml type information by invoking the OCaml compiler (§14.1.2).
• Let Menhir request and receive OCaml type information without invoking the OCaml compiler (§14.1.3).

14.1.1 Running without OCaml type information
The simplest thing to do is to run Menhir without any of the flags described in the following (§14.1.2, §14.1.3).
Then, the semantic actions are not type-checked, and their OCaml type is not inferred. (This is analogous to
using ocamlyacc.) The drawbacks of this approach are as follows:

• A type error in a semantic action is detected only when the .ml file produced by Menhir is type-checked.
The location of the type error, as reported by the OCaml compiler, can be suboptimal.
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• Unless a %type declaration for every nonterminal symbol is given, the inspection API cannot be generated,
that is, --inspection must be turned off.

14.1.2 Obtaining OCaml type information by calling the OCaml compiler
The second approach is to let Menhir invoke the OCaml compiler so as to type-check the semantic actions and
infer their types. This is done by invoking Menhir with the --infer switch, as follows.

--infer. This switch causes the semantic actions to be checked for type consistency before the parser is
generated. To do so, Menhir generates a mock .ml file, which contains just the semantic actions, and invokes
the OCaml compiler, under the form ocamlc -i, so as to type-check this file and infer the types of the semantic
actions. Menhir then reads this information and produces real .ml and .mli files.

--ocamlc command. This switch controls how ocamlc is invoked. It allows setting both the name of the
executable and the command line options that are passed to it.

One difficulty with the this approach is that the OCaml compiler usually needs to consult a few .cm[iox]
files. Indeed, if the .mly file contains a reference to an external OCaml module, say A, then the OCaml compiler
typically needs to read one or more files named A.cm[iox].

This implies that these files must have been created first. But how is one supposed to know, exactly, which
files should be created first? One must scan the .mly file so as to find out which external modules it depends
upon. In other words, a dependency analysis is required. This analysis can be carried out by invoking Menhir
with the --depend switch, as follows.

--depend. This switch causes Menhir to generate dependency information for use in conjunction with
make. When invoked in this mode, Menhir does not generate a parser. Instead, it examines the grammar specifi-
cation and prints a list of prerequisites for the targets basename.cm[iox], basename.ml, and basename.mli.
This list is intended to be textually included within a Makefile. To produce this list, Menhir generates a mock
.ml file, which contains just the semantic actions, invokes ocamldep, and postprocesses its output.

--raw-depend. This switch is analogous to --depend. However, in this case, ocamldep’s output is not
postprocessed by Menhir: it is echoed without change. This switch is not suitable for direct use with make; it is
intended for use with omake or ocamlbuild, which perform their own postprocessing.

--ocamldep command. This switch controls how ocamldep is invoked. It allows setting both the name of
the executable and the command line options that are passed to it.

14.1.3 Obtaining OCaml type information without calling the OCaml compiler
The third approach is to let Menhir request and receive OCaml type information without allowing Menhir to
invoke the OCaml compiler. There is nothing magic about this: to achieve this, Menhir must be invoked twice,
and the OCaml compiler must be invoked (by the user, or by the build system) in between. This is done as
follows.

--infer-write-query mockfilename. When invoked in this mode, Menhir does not generate a parser.
Instead, generates a mock .ml file, named mockfilename, which contains just the semantic actions. Then, it
stops.

It is then up to the user (or to the build system) to invoke ocamlc -i so as to type-check the mock .ml file
and infer its signature. The output of this command should be redirected to some file sigfilename. Then, Menhir
can be invoked again, as follows.

--infer-read-reply sigfilename. When invoked in this mode, Menhir assumes that the file sigfilename
contains the result of running ocamlc -i on the file mockfilename. It reads and parses this file, so as to obtain
the OCaml type of every semantic action, then proceeds normally to generate a parser.

This protocol was introduced on 2018/05/23; earlier versions of Menhir do not support it. Its existence can
be tested as follows:
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--infer-protocol-supported. When invoked with this switch, Menhir immediately terminates with
exit code 0. An earlier version of Menhir, which does not support this protocol, would display a help message
and terminate with a nonzero exit code.

14.2 Compilation flags
The following switches allow querying Menhir so as to find out which compilation flags should be passed to the
OCaml compiler and linker.

--suggest-comp-flags. This switch causes Menhir to print a set of suggested compilation flags, and
exit. These flags are intended to be passed to the OCaml compilers (ocamlc or ocamlopt) when compiling and
linking the parser generated by Menhir. What are these flags? In the absence of the --table switch, they are
empty. When --table is set, these flags ensure that MenhirLib is visible to the OCaml compiler. If the support
library MenhirLib was installed via ocamlfind, a -package directive is issued; otherwise, a -I directive is
used.

--suggest-link-flags-byte. This switch causes Menhir to print a set of suggested link flags, and exit.
These flags are intended to be passed to ocamlc when producing a bytecode executable. What are these flags?
In the absence of the --table switch, they are empty. When --table is set, these flags ensure that MenhirLib
is linked in. If the support library MenhirLib was installed via ocamlfind, a -linkpkg directive is issued;
otherwise, the object file menhirLib.cmo is named.

--suggest-link-flags-opt. This switch causes Menhir to print a set of suggested link flags, and exit.
These flags are intended to be passed to ocamlopt when producing a native code executable. What are these
flags? In the absence of the --table switch, they are empty. When --table is set, these flags ensure that
MenhirLib is linked in. If the support library MenhirLib was installed via ocamlfind, a -linkpkg directive
is issued; otherwise, the object file menhirLib.cmx is named.

--suggest-menhirLib. This switch causes Menhir to print (the absolute path of) the directory where
MenhirLib was installed. If MenhirLib was installed via ocamlfind, this is equivalent to calling ocamlfind
query menhirLib.

--suggest-ocamlfind. This switch causes Menhir to print a Boolean value (i.e., either true or false),
which indicates whether MenhirLib was installed via ocamlfind.

15. Comparison with ocamlyacc
Here is an incomplete list of the differences between ocamlyacc and Menhir. The list is roughly sorted by
decreasing order of importance.

• Menhir allows the definition of a nonterminal symbol to be parameterized by other (terminal or nonterminal)
symbols (§5.2). Furthermore, it offers a library of standard parameterized definitions (§5.4), including
options, sequences, and lists. It offers some support for EBNF syntax, via the ?, +, and * modifiers.
• ocamlyacc only accepts LALR(1) grammars. Menhir accepts LR(1) grammars, thus avoiding certain

artificial conflicts.
• Menhir’s %inline keyword (§5.3) helps avoid or resolve some LR(1) conflicts without artificial modification

of the grammar.
• Menhir explains conflicts (§6) in terms of the grammar, not just in terms of the automaton. Menhir’s

explanations are believed to be understandable by mere humans.
• Menhir offers an incremental API (in --table mode only) (§9.2). This means that the state of the parser can

be saved at any point (at no cost) and that parsing can later be resumed from a saved state.
• In --coq mode, Menhir produces a parser whose correctness and completeness with respect to the grammar

can be checked by Coq (§12).
• Menhir offers an interpreter (§8) that helps debug grammars interactively.
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• Menhir allows grammar specifications to be split over multiple files (§5.1). It also allows several grammars
to share a single set of tokens.
• Menhir produces reentrant parsers.
• Menhir is able to produce parsers that are parameterized by OCaml modules.
• ocamlyacc requires semantic values to be referred to via keywords: $1, $2, and so on. Menhir allows

semantic values to be explicitly named.
• Menhir warns about end-of-stream conflicts (§6.4), whereas ocamlyacc does not. Menhir warns about

productions that are never reduced, whereas, at least in some cases, ocamlyacc does not.
• Menhir offers an option to typecheck semantic actions before a parser is generated: see --infer.
• ocamlyacc produces tables that are interpreted by a piece of C code, requiring semantic actions to be

encapsulated as OCaml closures and invoked by C code. Menhir offers a choice between producing tables
and producing code. In either case, no C code is involved.
• Menhir makes OCaml’s standard library module Parsing entirely obsolete. Access to locations is now

via keywords (§7). Uses of raise Parse_error within semantic actions are deprecated. The function
parse_error is deprecated. They are replaced with keywords (§10).
• Menhir’s error handling mechanism (§10) is inspired by ocamlyacc’s, but is not guaranteed to be fully

compatible. Error recovery, also known as re-synchronization, is not supported by Menhir.
• The way in which severe conflicts (§6) are resolved is not guaranteed to be fully compatible with ocamlyacc.
• Menhir warns about unused %token, %nonassoc, %left, and %right declarations. It also warns about

%prec annotations that do not help resolve a conflict.
• Menhir accepts OCaml-style comments.
• Menhir allows %start and %type declarations to be condensed.
• Menhir allows two (or more) productions to share a single semantic action.
• Menhir produces better error messages when a semantic action contains ill-balanced parentheses.
• ocamlyacc ignores semicolons and commas everywhere. Menhir also ignores semicolons everywhere, but

treats commas as significant. Commas are optional within %token declarations.
• ocamlyacc allows %type declarations to refer to terminal or non-terminal symbols, whereas Menhir

requires them to refer to non-terminal symbols. Types can be assigned to terminal symbols with a %token
declaration.

16. Questions and Answers

� Is Menhir faster than ocamlyacc? What is the speed difference between menhir and menhir
--table? A (not quite scientific) benchmark suggests that the parsers produced by ocamlyacc and menhir
--table have comparable speed, whereas those produced by menhir are between 2 and 5 times faster. This
benchmark excludes the time spent in the lexer and in the semantic actions.

� How do I write Makefile rules for Menhir? This can a bit tricky. If you must do this, see §14. It is
recommended instead to use a build system with built-in support for Menhir, such as ocamlbuild or dune.

� How do I use Menhir with ocamlbuild? Pass -use-ocamlfind -use-menhir to ocamlbuild. To
pass options to Menhir, pass -menhir "menhir <options>" to ocamlbuild. To use Menhir’s table-based
back-end, pass -menhir "menhir --table" to ocamlbuild, and either pass -package menhirLib to
ocamlbuild or add the tag package(menhirLib) in the _tags file. To combine multiple .mly files, say
a.mly and b.mly, into a single parser, say parser.{ml,mli}, create a file named parser.mlypack that
contains the module names A B. See the demos directory for examples.
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� How do I use Menhir with dune? Please use dune version 1.4.0 or newer, as it has appropriate built-in
rules for Menhir parsers. In the simplest scenario, where the parser resides in a single source file parser.mly,
the dune-project file should contain a “stanza” along the following lines:

(menhir (
(modules (parser))
(flags ("--explain" "--dump"))
(infer true)

))

The --infer switch has special status and should not be used directly; instead, write (infer true) or (infer
false), as done above. (The default is true.) Ordinary command line switches, like --explain and --dump,
are passed as part of the flags line, as done above. The directory demos/calc-dune offers an example. For
more details, see dune’s documentation.

�Menhir reports more shift/reduce conflicts than ocamlyacc! How come? ocamlyacc sometimes merges
two states of the automaton that Menhir considers distinct. This happens when the grammar is not LALR(1). If
these two states happen to contain a shift/reduce conflict, then Menhir reports two conflicts, while ocamlyacc
only reports one. Of course, the two conflicts are very similar, so fixing one will usually fix the other as well.

� I do not use ocamllex. Is there an API that does not involve lexing buffers? Like ocamlyacc, Menhir
produces parsers whose monolithic API (§9.1) is intended for use with ocamllex. However, it is possible to
convert them, after the fact, to a simpler, revised API. In the revised API, there are no lexing buffers, and a lexer
is just a function from unit to tokens. Converters are provided by the library module MenhirLib.Convert.
This can be useful, for instance, for users of ulex, the Unicode lexer generator. Also, please note that Menhir’s
incremental API (§9.2) does not mention the type Lexing.lexbuf. In this API, the parser expects to be supplied
with triples of a token and start/end positions of type Lexing.position.

� I need both %inline and non-%inline versions of a non-terminal symbol. Is this possible? Define an
%inline version first, then use it to define a non-%inline version, like this:

%inline ioption(X): (* nothing *) { None } | x = X { Some x }
option(X): o = ioption(X) { o }

This can work even in the presence of recursion, as illustrated by the following definition of (reversed, left-
recursive, possibly empty) lists:

%inline irevlist(X): (* nothing *) { [] } | xs = revlist(X) x = X { x :: xs }
revlist(X): xs = irevlist(X) { xs }

The definition of irevlist is expanded into the definition of revlist, so in the end, revlist receives its
normal, recursive definition. One can then view irevlist as a variant of revlist that is inlined one level
deep.

� Can I ship a generated parser while avoiding a dependency on MenhirLib? Yes. One option is to use
the code-based back-end (that is, to not use --table). In this case, the generated parser is self-contained.
Another option is to use the table-based back-end (that is, use --table) and include a copy of the files
menhirLib.{ml,mli} together with the generated parser. The command menhir --suggest-menhirLib will
tell you where to find these source files.

� Why is $startpos off towards the left? It seems to include some leading whitespace. Indeed, as
of 2015/11/04, the computation of positions has changed so as to match ocamlyacc’s behavior. As a result,
$startpos can now appear to be too far off to the left. This is explained in §7. In short, the solution is to use
$symbolstartpos instead.
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� Can I pretty-print a grammar in ASCII, HTML, or LATEX format? Yes. Have a look at obelisk [4].

� Does Menhir support mid-rule actions? Yes. See midrule and its explanation in §5.4.

17. Technical background
After experimenting with Knuth’s canonical LR(1) technique [15], we found that it really is not practical, even
on today’s computers. For this reason, Menhir implements a slightly modified version of Pager’s algorithm [19],
which merges states on the fly if it can be proved that no reduce/reduce conflicts will arise as a consequence
of this decision. This is how Menhir avoids the so-called mysterious conflicts created by LALR(1) parser
generators [7, section 5.7].

Menhir’s algorithm for explaining conflicts is inspired by DeRemer and Pennello’s [6] and adapted for use
with Pager’s construction technique.

By default, Menhir produces code, as opposed to tables. This approach has been explored before [3, 9].
Menhir performs some static analysis of the automaton in order to produce more compact code.

When asked to produce tables, Menhir performs compression via first-fit row displacement, as described by
Tarjan and Yao [23]. Double displacement is not used. The action table is made sparse by factoring out an error
matrix, as suggested by Dencker, Dürre, and Heuft [5].

The type-theoretic tricks that triggered our interest in LR parsers [21] are not implemented in Menhir. In
the beginning, we did not implement them because the OCaml compiler did not at the time offer generalized
algebraic data types (GADTs). Today, OCaml has GADTs, but, as the saying goes, “if it ain’t broken, don’t fix
it”.

The main ideas behind the Coq back-end are described in a paper by Jourdan, Pottier and Leroy [13]. The C11
parser in the CompCert compiler [17] is constructed by Menhir and verified by Coq, following this technique.
How to construct a correct C11 parser using Menhir is described by Jourdan and Pottier [12].

The approach to error reports presented in §11 was proposed by Jeffery [10] and further explored by
Pottier [20].
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